Supplementary Methods

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Methods Weake2009 Supplemental Methods 1 Supplemental methods Preparation of soluble nuclear extracts, affinity purification and MudPIT analysis Nuclear extracts were prepared and affinity purifications conducted from 4 L of S2 cells grown to a density of 1 x 107cells/mL in Hyclone SFX media with low/no copper induction. Cells were collected by centrifugation at 5000 rpm 15 min 4ºC and washed in Wash Buffer (10 mM HEPEs [Na+], pH 7.5; 140 mM NaCl). Cells were resuspended in + 40mL of Buffer I (15 mM HEPEs [Na ] pH 7.5; 10 mM KCl, 5 mM MgCl2; 0.1 mM EDTA; 0.5 mM EGTA; 350 mM sucrose; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) and disrupted by 40 strokes in a Dounce homogenizer with the loose pestle. Nuclei were collected by centrifugation at 10,400 x g 15 min 4ºC and washed once with 40 mL of Buffer I. The soluble nuclear fraction was isolated by resuspending nuclei in 20 mL of Extraction Buffer (20 mM HEPEs [Na+], pH 7.5; 10% glycerol; 350 mM NaCl; 1 mM MgCl2; 0.1% TritonX-100; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) for 1 h 4ºC with rotation, followed by centrifugation to pellet the insoluble chromatin fraction at 18,000 x g 10 min 4ºC. The soluble nuclear extract was cleared by centrifugation at 40,000 rpm 1.5 h 4ºC. Nuclear extracts were diluted to a final salt concentration of 300 mM NaCl and incubated with FLAG-agarose. FLAG-bound proteins were washed 3 times in binding buffer and eluted using 0.5 mg/mL FLAG3 peptide. For tandem FLAG-HA purification, FLAG- eluted proteins were incubated with HA-agarose, washed 3 times in binding buffer and eluted using 0.2 mg/mL HA3 peptide. The relative spectral abundance and identity of proteins present in the tandem affinity-purified complexes was determined using MudPIT (Florens et al. 2006; Florens and Washburn 2006). Proteins that non-specifically bind FLAG-HA beads were identified in control purifications from untagged extract, and from cells expressing the tagged nuclear protein CG6459, and excluded from further analysis. The dNSAF calculation provides a measure of the relative spectral abundance of each polypeptide within a given purification and distinguishes between different protein isoforms based on the identification of unique peptide spectra (Mosley et al. 2009). The cNSAF calculation also compares the relative spectral abundance for a set of polypeptides, although it is used on a defined set of proteins rather than on all polypeptides detected in the MudPIT analysis (Florens et al. 2006; Florens and Washburn 2006). Merged data are shown for Ada1, WDA, SAF6 and TAF6 representing two technical replicates of the MudPIT analysis. Co-immunoprecipitation Nuclear extract was prepared from OregonR or saf6 12-18 h embryos as described above, with minor modifications. Embryos were dechorionated in 50% bleach for 2 min, then homogenized in 1 mL of Buffer I in a 1 mL Dounce homogenizer and nuclear extract prepared as described for S2 cells. Antibodies were pre-bound to sheep anti-rabbit IgG Dynabeads overnight at 4ºC in (20 mM HEPEs [Na+], pH 7.5; 10% glycerol; 150 mM NaCl; 1 mM MgCl2; 0.1% TritonX-100; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF). 100 g of soluble nuclear extract was incubated with bead-bound antibody overnight at 4ºC in the same buffer. Beads were washed 4 times in binding buffer and bound proteins analyzed by SDS-PAGE and western blotting. 1 Weake2009 Supplemental Methods 2 Co-expression and purification of histone-fold domain proteins Co-expressed HFD-GST or FLAG fusion proteins were purified from E. coli. GST-HFD fusions were only moderately soluble when co-expressed in the absence of another HFD- fusion protein. However, solubility of FLAG-HFD fusions was similar in the presence of GST-HFD fusion proteins or GST alone. Briefly, expression was induced using 0.1 mM IPTG and soluble bacterial lysate prepared using standard methods. Lysate was incubated with glutathione sepharose for 2 h 4ºC in Binding Buffer I (20 mM Tris-HCl, pH 7.5; 250 mM NaCl; 1% TritonX-100) and GST-fusions eluted with glutathione. Eluted fractions were incubated with FLAG-agarose for 2 h 4ºC in Binding Buffer II (20 mM HEPEs + [Na ], pH 7.5; 350 mM NaCl; 1 mM MgCl2; 0.1% TritonX-100), and eluted using 0.5 mg/mL FLAG3 peptide. Purified complexes were analyzed by SDS-PAGE and stained with Imperial™ Coomassie (Pierce). Histone extraction from larvae Histones were acid extracted from second instar larvae using a modified soluble nuclear extract procedure. Both Buffer I and the Extraction Buffer were supplemented with 10 mM sodium butyrate. Briefly, larvae were homogenized in 2 mL of Buffer I and filtered through a single layer of miracloth prior to centrifugation 10,400 x g 15 min 4ºC. Soluble nuclear proteins were extracted by incubation in 1 mL of Extraction Buffer for 1 h at 4ºC with rotation, followed by centrifugation to pellet the insoluble chromatin fraction at 18,000 x g 10 min 4ºC. Acid-soluble material was extracted from the insoluble chromatin fraction by resuspension of the pellet in 0.4 M HCl for 20 min 25ºC with rotation. Acid- insoluble material was pelleted by centrifugation at 425 x g 10 min 4ºC. The supernatant containing the histone proteins was neutralized by the addition of an equimolar volume of NaOH and used directly for SDS-PAGE and western blotting. Genetics The y1 w67c23; P{w+mC y+mDint2=EPgy2}CG3883EY05869 (Bloomington stock number 16681) and w1118; Df(2L)Exel6002, P{w+mC=XP-U}Exel6002/CyO (Bloomington stock number 7489) flies were kindly provided by the Bloomington Drosophila Stock Center at Indiana University. The EY05869 P-element was mobilized as described previously to generate deletions in SAF6 (Guelman et al. 2006). A genomic construct consisting of the adjacent CG3639 gene together with its regulatory regions was generated in pCaSpeR4. A homozygous viable third chromosome insertion of the P{w+mC=[CG3639]} rescue construct was crossed to the saf6303 deletion to generate w; saf6303/CyO, P{w+mC=GAL4-twi.G}2.2, P{UAS-2xEGFP}AH2.2; P{w+mC=[CG3639]}. Homozygous mutant embryos were identified as described previously (Guelman et al. 2006) and populations sorted either using the CoPas Plus (Union Biometrica) or by hand (chromatin immunoprecipitation experiments). The lethality phase of the saf6 mutation was determined by crossing w; saf6303/CyO, P{w+mC=GAL4-twi.G}2.2, P{UAS- 2xEGFP}AH2.2; P{w+mC=[CG3639]} to w1118; Df(2L)Exel6002, P{w+mC=XP- U}Exel6002/ CyO, P{w+mC=GAL4-twi.G}2.2, P{UAS-2xEGFP}AH2.2 and comparing the growth of GFP and non-GFP larvae. 2 Weake2009 Supplemental Methods 3 qRT-PCR RNA was isolated from three independent collections of 100 stage 14-16 embryos of the following genotypes: wda, saf6 and OregonR. RNA was treated with Turbo-DNAse (Ambion) and cDNA generated using Superscript III reverse transcriptase (Invitrogen). qPCR reactions on 10 ng-equivalent of cDNA were conducted using a 7900HT Fast Real-time PCR system (Applied Biosystems) with Perfecta SYBR Fast Mix (Quanta BioSciences). Samples were analyzed relative to OregonR cDNA standards for all primer sets. Candidate SAGA-regulated genes were identified by microarray analysis of gene expression (data not shown). The primer sequences used are listed in Table S4. Chromatin immunoprecipitation Chromatin immunoprecipitation was conducted as described in (Zeitlinger et al. 2007) with minor modifications. 12-18 h OregonR or hand-sorted saf6 embryos were fixed and homogenized in Buffer A1 (15 mM HEPEs [Na+], pH 7.5; 15 mM NaCl; 60 mM KCl; 4 mM MgCl2; 0.5% TritonX-100; 0.5 mM DTT) containing 1.8% formaldehyde for 15 min on ice. Cross-linking was quenched by the addition of 125 mM glycine and the chromatin pellet washed 3 times with Buffer A1, and once with Buffer A2 (15 mM HEPEs [Na+], pH 7.5; 140 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 1% TritonX-100; 0.1% sodium deoxycholate; 0.1% SDS; 0.5% N-lauroylsarcosine; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF). 0.5 g equivalent embryo mass was sonicated in 1 mL Buffer A2 for 5 x 12 s at 30% power. Chromatin was centrifuged for 10 min 14,000 rpm 4ºC, and 0.2 g equivalent embryo mass of soluble chromatin (400 l) incubated with -Gcn5 or -acetylated Lys-9 H3 (Upstate; rabbit; #06-942) antibody overnight at 4ºC. 50 l of sheep anti-rabbit IgG Dynabeads was added to each chromatin/antibody solution and incubated for 2 h 4ºC, then beads were washed 5 x in RIPA Buffer (50 mM HEPEs [Na+], pH 7.5; 1 mM EDTA; 0.7% sodium deoxycholate; 1% NP-40; 0.5 M LiCl). DNA/protein complexes were eluted in TE Buffer containing 1% SDS and 250 mM NaCl 2 x 30 min at 65ºC. Cross-links were reversed at 65ºC 6 h, DNA was treated with RNAse and proteinase K, and purified by phenol-chloroform extraction and ethanol precipitation. Input and immunoprecipitated (IP) DNA samples were analyzed by qPCR relative to sonicated OregonR input DNA standards for all primer sets. The primer sequences used are listed in Table S4. DPE analysis The 5' UTR of all annotated Drosophila genes were searched for sense occurrences of the DPE motif described in (Kutach and Kadonaga 2000) with IUPAC ambiguity code sequence DSWYVY at position +28 relative to the transcription start site (+1).
Recommended publications
  • Taenia Solium TAF6 and TAF9 Binds to a Putative Downstream Promoter Element
    bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taenia solium TAF6 and TAF9 binds to a putative Downstream Promoter Element present in TsTBP1 gene core promoter. Oscar Rodríguez-Lima1, #a, Ponciano García-Gutierrez2, Lucía Jimenez1, Angel Zarain-Herzberg3, Roberto Lazarini4 and Abraham Landa1*. 1Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 2Departamento de Química, Universidad Autónoma Metropolitana–Iztapalapa. Ciudad de México, México. 3Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 4Departamento de Biología Experimental, Universidad Autónoma Metropolitana– Iztapalapa. Ciudad de México, México. #a Current address: Center for Integrative Genomics, Lausanne University, Lausanne, Switzerland. *Corresponding author: Abraham Landa, Ph.D. Universidad Nacional Autónoma de México. Departamento de Microbiología y Parasitología, Facultad de Medicina Edificio A 2do piso. Ciudad Universitaria. CDMX 04510, México Phone: (52 55) 56-23-23-57, Fax: (52 55) 56-23-23-82, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Molecular Structure of Promoter-Bound Yeast TFIID
    ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.
    [Show full text]
  • TAF10 Complex Provides Evidence for Nuclear Holo&Ndash;TFIID Assembly from Preform
    ARTICLE Received 13 Aug 2014 | Accepted 2 Dec 2014 | Published 14 Jan 2015 DOI: 10.1038/ncomms7011 OPEN Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules Simon Trowitzsch1,2, Cristina Viola1,2, Elisabeth Scheer3, Sascha Conic3, Virginie Chavant4, Marjorie Fournier3, Gabor Papai5, Ima-Obong Ebong6, Christiane Schaffitzel1,2, Juan Zou7, Matthias Haffke1,2, Juri Rappsilber7,8, Carol V. Robinson6, Patrick Schultz5, Laszlo Tora3 & Imre Berger1,2,9 General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)— assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. 1 European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France. 2 Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France. 3 Cellular Signaling and Nuclear Dynamics Program, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404 Illkirch, France.
    [Show full text]
  • Identification of Expression Qtls Targeting Candidate Genes For
    ISSN: 2378-3648 Salleh et al. J Genet Genome Res 2018, 5:035 DOI: 10.23937/2378-3648/1410035 Volume 5 | Issue 1 Journal of Open Access Genetics and Genome Research RESEARCH ARTICLE Identification of Expression QTLs Targeting Candidate Genes for Residual Feed Intake in Dairy Cattle Using Systems Genomics Salleh MS1,2, Mazzoni G2, Nielsen MO1, Løvendahl P3 and Kadarmideen HN2,4* 1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark Check for 2Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark updates 3Department of Molecular Biology and Genetics-Center for Quantitative Genetics and Genomics, Aarhus University, AU Foulum, Tjele, Denmark 4Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark *Corresponding author: Kadarmideen HN, Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark, E-mail: [email protected] Abstract body weight gain and net merit). The eQTLs and biological pathways identified in this study improve our understanding Background: Residual feed intake (RFI) is the difference of the complex biological and genetic mechanisms that de- between actual and predicted feed intake and an important termine FE traits in dairy cattle. The identified eQTLs/genet- factor determining feed efficiency (FE). Recently, 170 can- ic variants can potentially be used in new genomic selection didate genes were associated with RFI, but no expression methods that include biological/functional information on quantitative trait loci (eQTL) mapping has hitherto been per- SNPs. formed on FE related genes in dairy cows. In this study, an integrative systems genetics approach was applied to map Keywords eQTLs in Holstein and Jersey cows fed two different diets to eQTL, RNA-seq, Genotype, Data integration, Systems improve identification of candidate genes for FE.
    [Show full text]
  • Anti-Human TAF6
    TM Bio Matrix Research Inc. Sales Head Office 105 Higashifukai, Nagareyama City, Chiba 270-0101 Japan Tel.: +81-4-7178-5118 / Fax:+81-4-7178-5119 URL : http://www.biomatrix.co.jp Catalog No.BMR 00353 Mouse monoclonal antibody Anti-Human TAF6 ■Formulation Lot No. 585D4a-1 Mouse monoclonal anti-human TAF6 antibody Clone No. 585D4a in PBS (3.0 mM KCl, 1.5 mM KH 2PO4 , Antibody class : IgG1 140 mM NaCl, 8.0 mM Na 2HPO4 (pH 7.4)) containing 1% bovine serum albumin (BSA) Immunogen : Recombinant and 0.05% sodium azide (NaN3 ). ■Antibody concentration 100 µg/ml (1.0 ml) ■Storage o Store at 2-8 C for up to one year. We recommend storing at –20 oC for long-term storage. Avoid repeat freezing and thawing cycles. ■Preparation This antibody was purified using protein G column chromatography from culture supernatant of hybridoma cultured in a medium containing bovine IgG-depleted (approximately 95%) fetal bovine serum. ■Sterility Filtered through a 0.22 µm membrane. ■Applications Please visit our website at http://www.biomatrix.co.jp/. ■Disposal This antibody solution contains sodium azide (NaN 3) as a preservative. There is a potential hazard that NaN3 reacts with copper or lead to produce an expl- osive compound. For safe disposal, the vial has to be washed thoroughly with water. ■Safety warnings and precautions Caution must be taken to avoid contact with skin or eyes. In such a case, rinse thoroughly at once with water. Do not ingest, inhale, or swallow. Seek medical attention immediately. Wear appropriate protective clothing such as laboratory overalls, safety glasses and gloves.
    [Show full text]
  • TAF6 (NM 001190415) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC231390L3 TAF6 (NM_001190415) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: TAF6 (NM_001190415) Human Tagged ORF Clone Tag: Myc-DDK Symbol: TAF6 Synonyms: ALYUS; MGC:8964; TAF(II)70; TAF(II)80; TAF2E; TAFII-70; TAFII-80; TAFII70; TAFII80; TAFII85 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC231390). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001190415 ORF Size: 2142 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 TAF6 (NM_001190415) Human Tagged ORF Clone – RC231390L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001190415.1 RefSeq ORF: 2145 bp Locus ID: 6878 UniProt ID: P49848 Protein Families: Transcription Factors Protein Pathways: Basal transcription factors MW: 77.4 kDa Gene Summary: Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides.
    [Show full text]
  • Invadolysin Acts Genetically Via the SAGA Complex to Modulate Chromosome Structure Shubha Gururaja Rao†, Michal M
    3546–3562 Nucleic Acids Research, 2015, Vol. 43, No. 7 Published online 16 March 2015 doi: 10.1093/nar/gkv211 Invadolysin acts genetically via the SAGA complex to modulate chromosome structure Shubha Gururaja Rao†, Michal M. Janiszewski†, Edward Duca, Bryce Nelson, Kanishk Abhinav, Ioanna Panagakou, Sharron Vass and Margarete M.S. Heck* University of Edinburgh, Queen’s Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK Received December 13, 2012; Revised February 26, 2015; Accepted February 28, 2015 Downloaded from https://academic.oup.com/nar/article/43/7/3546/2414574 by guest on 04 October 2021 ABSTRACT (gcn5, ada2b and sgf11) all suppress an invadolysin- induced rough eye phenotype. We conclude that Identification of components essential to chromo- the abnormal chromosome phenotype of invadolysin some structure and behaviour remains a vibrant mutants is likely the result of disrupting the histone area of study. We have previously shown that in- modification cycle, as accumulation of ubH2B and vadolysin is essential in Drosophila, with roles in cell H3K4me3 is observed. We further suggest that the division and cell migration. Mitotic chromosomes mislocalization of ubH2B to the cytoplasm has ad- are hypercondensed in length, but display an aber- ditional consequences on downstream components rant fuzzy appearance. We additionally demonstrated essential for chromosome behaviour. We therefore that in human cells, invadolysin is localized on the propose that invadolysin plays a crucial role in chro- surface of lipid droplets, organelles that store not mosome organization via its interaction with the only triglycerides and sterols but also free histones SAGA complex.
    [Show full text]
  • RNA-Seq Transcriptomics and Pathway Analyses Reveal Potential Regulatory Genes and Molecular Mechanisms in High- and Low-Residual Feed Intake in Nordic Dairy Cattle M
    Salleh et al. BMC Genomics (2017) 18:258 DOI 10.1186/s12864-017-3622-9 RESEARCHARTICLE Open Access RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle M. S. Salleh1, G. Mazzoni1, J. K. Höglund2, D. W. Olijhoek2,3, P. Lund3, P. Løvendahl2 and H. N. Kadarmideen4* Abstract Background: The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. Results: The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences < ~200 bases) were sequenced, 52 million reads were mapped, and 24,616 known transcripts were quantified according to the bovine reference genome. A comparison of the high- and low-RFI groups revealed 70 and 19 significantly DEGs in Holstein and Jersey cows, respectively.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Integrative Framework for Identification of Key Cell Identity Genes Uncovers
    Integrative framework for identification of key cell PNAS PLUS identity genes uncovers determinants of ES cell identity and homeostasis Senthilkumar Cinghua,1, Sailu Yellaboinaa,b,c,1, Johannes M. Freudenberga,b, Swati Ghosha, Xiaofeng Zhengd, Andrew J. Oldfielda, Brad L. Lackfordd, Dmitri V. Zaykinb, Guang Hud,2, and Raja Jothia,b,2 aSystems Biology Section and dStem Cell Biology Section, Laboratory of Molecular Carcinogenesis, and bBiostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and cCR Rao Advanced Institute of Mathematics, Statistics, and Computer Science, Hyderabad, Andhra Pradesh 500 046, India Edited by Norbert Perrimon, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, and approved March 17, 2014 (received for review October 2, 2013) Identification of genes associated with specific biological pheno- (mESCs) for genes essential for the maintenance of ESC identity types is a fundamental step toward understanding the molecular resulted in only ∼8% overlap (8, 9), although many of the unique basis underlying development and pathogenesis. Although RNAi- hits in each screen were known or later validated to be real. The based high-throughput screens are routinely used for this task, lack of concordance suggest that these screens have not reached false discovery and sensitivity remain a challenge. Here we describe saturation (14) and that additional genes of importance remain a computational framework for systematic integration of published to be discovered. gene expression data to identify genes defining a phenotype of Motivated by the need for an alternative approach for iden- interest. We applied our approach to rank-order all genes based on tification of key cell identity genes, we developed a computa- their likelihood of determining ES cell (ESC) identity.
    [Show full text]
  • Structural and Functional Insight Into TAF1–TAF7, a Subcomplex of Transcription Factor II D
    Structural and functional insight into TAF1–TAF7, a subcomplex of transcription factor II D Suparna Bhattacharyaa, Xiaohua Loua,b, Peter Hwangc, Kanagalaghatta R. Rajashankard, Xiaoping Wange, Jan-Åke Gustafssonb, Robert J. Fletterickc, Raymond H. Jacobsone, and Paul Webba,1 aGenomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030; bCenter for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204; cUniversity of California Medical Center, San Francisco, CA 94158; dThe Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439; and eDepartment of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030 Contributed by Jan-Åke Gustafsson, May 13, 2014 (sent for review April 17, 2014; reviewed by Fraydoon Rastinejad and Stephen K. Burley) Transcription factor II D (TFIID) is a multiprotein complex that copy numbers and mutations are reported in high-grade serous nucleates formation of the basal transcription machinery. TATA ovarian cancer (8). binding protein-associated factors 1 and 7 (TAF1 and TAF7), two TAF1, the largest subunit of TFIID, plays a particularly im- subunits of TFIID, are integral to the regulation of eukaryotic tran- portant role in TFIID complex activity (9, 10). Unlike other scription initiation and play key roles in preinitiation complex (PIC) TAFs, it spans two lobes (from C through A) within the trilobed assembly. Current models suggest that TAF7 acts as a dissociable structure of TFIID, as indicated by EM and immunomapping inhibitor of TAF1 histone acetyltransferase activity and that this studies, with the TAF1 C terminus located in the A lobe (3, 11).
    [Show full text]
  • A Unified Nomenclature for TATA Box Binding Protein (TBP)-Associated Factors (Tafs) Involved in RNA Polymerase II Transcription
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press CORRESPONDENCE A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription La`szlo`Tora1 Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, CNRS/INSERM/ULP, F-67404 ILLKIRCH Cedex, CU de Strasbourg, France Initiation of transcription by RNA polymerase II (Pol II) The unified nomenclature is based on the following requires general transcription factors to assemble the Pol considerations: II pre-initiation complex (PIC) (Hampsey 1998). PIC as- 1. It now appears evident from a comparison of Dro- sembly on both TATA-containing and TATA-less pro- sophila, human, and yeast TFIID that there is an es- moters can be nucleated by the general transcription fac- sential or “core” set of TAFs that are conserved across tors TFIID or B-TFIID, which are comprised of the many species. These 13 evolutionarily conserved TATA-binding protein (TBP) and TBP-associated factors TAFs (Sanders and Weil 2000) have been aligned with (TAF s) (Bell and Tora 1999; Albright and Tjian 2000). II their orthologs from different species and designated More than 10 years ago, the first TAF s were discovered II TAF1 to TAF13 (see Table 1). After extensive discus- in Drosophila and in human cells (Dynlacht et al. 1991; sions this nomenclature was chosen because of its Tanese et al. 1991). These proteins were identified in simplicity and because it complies with guidelines biochemically stable complexes with TBP and named endorsed by both the Saccharomyces Genome Data- after their electrophoretic mobility in polyacrylamide base (SGD) and the human HUGO Gene Nomencla- gels.
    [Show full text]