CIRCADIAN MECHANISMS of CALORIE RESTRICTION in DELAYING AGING KULDEEP MAKWANA Bachelor of Dental Surgery Pacific Dental College

Total Page:16

File Type:pdf, Size:1020Kb

CIRCADIAN MECHANISMS of CALORIE RESTRICTION in DELAYING AGING KULDEEP MAKWANA Bachelor of Dental Surgery Pacific Dental College CIRCADIAN MECHANISMS OF CALORIE RESTRICTION IN DELAYING AGING KULDEEP MAKWANA Bachelor of Dental Surgery Pacific Dental College and General Hospital, Udaipur, India December 2010 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN REGULATORY BIOLOGY at the CLEVELAND STATE UNIVERSITY December 2018 © Copyright by Kuldeep Makwana 2018 We hereby approve this dissertation For Kuldeep Makwana Candidate for the Doctor of Philosophy in Regulatory Biology Degree for the Department of Biological, Geological and Environmental Sciences AND CLEVELAND STATE UNIVERSITY College of Graduate Studies by Date: 11/14/2018 Dr. Roman Kondratov, GRHD/BGES, Cleveland State University Major Advisor Date: 11/14/2018 Dr. Girish Shukla, GRHD/BGES, Cleveland State University Advisory Committee Member Date: 11/14/2018 Dr. Crystal Weyman, GRHD/BGES, Cleveland State University Advisory Committee Member Date: 11/14/2018 Dr. Justin Lathia, Department of Cellular and Molecular Medicine, CCF Advisory Committee Member Date: 11/14/2018 Dr. Aaron Severson, GRHD/BGES, Cleveland State University Internal Examiner Date: 11/14/2018 Dr. Yana Sandlers, Department of Chemistry, Cleveland State University External Examiner Student’s Date of Defense: 11/14/2018 DEDICATION I dedicate my work to my family and friends. To my parents for their support and faith, they have shown in all my decisions, I have ever taken to achieve my goals. To all my friends without whom this journey would not have been this eventful. ACKNOWLEDGEMENTS “A GOOD TEACHER CAN INSPIRE HOPE, IGNITE THE IMAGINATION, AND INSTILL A LOVE OF LEARNING” - BRAD HENRY First and foremost, I would like to acknowledge Dr. Roman Kondratov for being a mentor that epitomizes the sayings of Brad Henry. I would like to thank him for his support and believe he has shown in my abilities. He has been the guiding torch for all these years and played an important role in the development of my scientific intellect as well as interpersonal skills. Not only he guided me in my Ph.D. dissertation work but also taught about life lessons like a friend from time to time. He is one humble person and a very cool professor I have ever met. I’d like to acknowledge my parents. I’d always be indebted by their unconditional love and support. I’d like to extend my deepest regards and thanks to my advisory committee members: Dr. Shukla, Dr. Crystal Weyman, and Dr. Justin Lathia. They have always motivated me and helped me transform my project in various ways. At the end of every committee meeting, I have always learned something new which I will carry with me forever and implement in future as well. I’d also like to thank Dr. Aron Severson and Dr. Yana Sandlers for agreeing to serve on my committee as an internal and external reviewer. I’d like to thank all my lab mates, current and former, and friends in the BGES department for making this lengthy and difficult journey, at times, to be the one that will always remain a part of my life. I’d like to thank Sonal Patel for being a good friend and take all my stupid jokes lightly with no offense. Ravinder Kaur and Amra Ismail for being a family away from my family. Thanks to all these amazing people, going to the lab never felt like going to work. I thoroughly enjoyed and will cherish the time I spent in Dr. Roman Kondratov’s lab at Cleveland state university. Lastly, thanks to the almighty God for bestowing his blessing and love upon me. CIRCADIAN MECHANISMS OF CALORIE RESTRICTION IN DELAYING AGING KULDEEP MAKWANA ABSTRACT Calorie Restriction (CR) is a dietary intervention known to delay age associated pathologies and conditions. Its beneficial effects on the longevity are reported in variety of organisms ranging from unicellular to multi-cellular organisms like mammals. Various mechanisms have been proposed for the beneficial effect of CR on the lifespan. One of the proposed mechanisms by which CR brings about its beneficial effects on the lifespan is regulation of protein synthesis. Various studies have demonstrated an increase in protein synthesis under CR, some claimed inhibition of protein synthesis under CR, and some claimed no effect on protein synthesis under CR. In this work, using comprehensive circadian experimental setup, I have demonstrated inhibition of global protein synthesis under CR diet in mouse liver. Animals were subjected to two months of CR followed by polysome profiling of liver tissue. Protein translation was down-regulated in the liver of CR animals at all time points but after four hours of feeding, where it was found to be higher than AL animals. Transcripts associated with polysomes were isolated and mRNA-sequencing was performed. CR was found to be involved in the temporal reprogramming of circadian rhythms in protein translation. Furthermore, the effect of CR on differential translation was studied. mRNA-Sequencing assayed 26,913 transcripts associated with polysomes, 0.1% of the total number of transcripts were found to be differentially abundant in the polysomes. My study has revealed, for the first, CR mediated induced expression of ACOT enzymes which are known to be involved fat metabolism. Thus, I demonstrated circadian mechanism of calorie restriction in vii regulating metabolism via controlling the gene expression at the level of translation in CR animals. viii TABLE OF CONTENTS Page ABSTRACT......................................................................................................................vii LIST OF TABLES ............................................................................................................xii LIST OF FIGURES .........................................................................................................xiii LISTOFABBREVIATIONS.............................................................................................xv CHAPTER I. INTRODUCTION 1.1. The Process Of Aging……………………………………..…………1 1.2. Calorie Restriction- A Dietary Regimen Known To Extend Lifespan.……………………………………………………………..6 1.3. Circadian Clocks………………………………………..…………..14 1.4. Protein Translation…………………………………….…..……......19 1.5. Fat/Lipid Metabolism And Aging…………………………..………30 1.6. Role Of ACOTs In Fat Metabolism……………………………..….39 II. MATERIALS AND METHODS 2.1. Animal Experiments…...…………………………………..……….45 2.2. Polyribosome Profiling…………………….…………….………....46 2.3. RNA Isolation…………………………………………….….……..46 2.4. RNA-Sequencing………………………………………………..….47 ix 2.5. Western Blotting………………………………………..…………..47 2.6 Quantitative RT-PCR………………………………...……………...47 2.7. KEGG Pathway Analysis…..……………………………………….48 2.8 Analysis Of mRNA Sequencing Library……………………..……..48 2.9. JTK_Cycle Analysis……………………………………………......49 2.10. Statistical Analysis…………………………………….………….49 III. CALORIE RESTRICTION INHIBITS GLOBAL PROTEIN TRANSLATION IN MOUSE LIVER……………………………………..50 3.1. Introduction…………………………………………………….…...50 3.2. Result………………………………………………………..……...51 3.3. Discussion……………………..……………………………………56 3.4. Conclusion………………….………………………..……..………58 IV. CALORIE RESTRICTION REPROGRAMS DIURNAL RHYTHMS IN PROTEIN TRANSLATION TO REGULATE METABOLISM…………………………………..…………………………60 4.1. Abstract…………………………..…………………………………60 4.2. Introduction……………………..…………………………………..61 4.3. Results…………………………………..…………………………..63 4.4. Discussion…………………….……………….……...………….....89 x 4.6. Acknowledgements………………………………………………....99 V. CALORIE RESTRICTION INDUCED ACOTs EXPRESSION IS BMAL1 DEPENDENT……………………………………………………..………..100 5.1. Introduction……………………………………………..…………100 5.2. Results………………………………………………………….….101 5.3. Discussion…………………………………………………………108 VI. CONCLUSION...…………………………………………….……………..106 BIBLIOGRAPHY………………………………………………………………………107 APPENDICES A. Supplemental Table………………....…………………………..…………..131 B. Supplemental Figure………...…...….……………………..……….…….…132 C. Supplemental Figure ……………………...………………….……..……....134 xi LIST OF TABLES Table Page 1. Substrate specificity of mouse peroxisomal ACOTs…………………...……………42 2. Primers for RT-qPCR………………………….…….…………..…………………...48 3. Phase of rhythmicity in translation and transcription for circadian clock genes…………………………………………………………...……………...131 xii LIST OF FIGURES Figure . Page 1-1. Beneficial Effects of Calorie Restriction………………………...……………..........7 1-2. Circadian clock organization ………………………………...…………………….16 1-3. Molecular clock………………………………………..…………………………...19 1-4. Initiation of translation………………………………..……………………………24 1-5. Mechanism of translation elongation…………………..…………………………..27 1-6. Mechanism of protein translation termination step……….…….………………….29 1-7. Mechanism of Acyl CoA shuttling inside the Mitochondria….……..………..........33 1-8. Mechanism of β-oxidation……………………………..……….…………………..35 1-9. Structure of animal FASI……………………………….…………………………..36 1-10. Subcellular localization of type I ACOTs………………………..……………….44 3-1. Inhibition of global protein translation in the mouse liver under CR…………...….53 3-2. Method for rate of protein translation quantification……………..………………..54 3-3. Rate of protein translation under 30% CR in mouse liver……………...…………..55 4-1. Schematic representation of experimental workflow………………..……………..64 4-2. Differential translation induced by CR diet………………...……………………....66 4-3. Validation of RNA-Seq data………………………...………………...…………....67 xiii 4-4. KEGG analysis of differentially abundant P-mRNAs under CR…………..………68 4-5. Rhythmic Translation of circadian core clock genes………………...……………..70 4-6. Rhythmic P-mRNAs in the liver polysomes of AL and CR animals……...……….72 4-7. KEGG analysis of rhythmic P-mRNAs…………………………………...………..73 4-8. KEGG analysis of rhythmic P-mRNAs
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman Et Al
    US 20150337275A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0337275 A1 Pearlman et al. (43) Pub. Date: Nov. 26, 2015 (54) BOCONVERSION PROCESS FOR Publication Classification PRODUCING NYLON-7, NYLON-7.7 AND POLYESTERS (51) Int. C. CI2N 9/10 (2006.01) (71) Applicant: INVISTATECHNOLOGIES S.a.r.l., CI2P 7/40 (2006.01) St. Gallen (CH) CI2PI3/00 (2006.01) CI2PI3/04 (2006.01) (72) Inventors: Paul S. Pearlman, Thornton, PA (US); CI2P 13/02 (2006.01) Changlin Chen, Cleveland (GB); CI2N 9/16 (2006.01) Adriana L. Botes, Cleveland (GB); Alex CI2N 9/02 (2006.01) Van Eck Conradie, Cleveland (GB); CI2N 9/00 (2006.01) Benjamin D. Herzog, Wichita, KS (US) CI2P 7/44 (2006.01) CI2P I 7/10 (2006.01) (73) Assignee: INVISTATECHNOLOGIES S.a.r.l., (52) U.S. C. St. Gallen (CH) CPC. CI2N 9/13 (2013.01); C12P 7/44 (2013.01); CI2P 7/40 (2013.01); CI2P 13/005 (2013.01); (21) Appl. No.: 14/367,484 CI2P 17/10 (2013.01); CI2P 13/02 (2013.01); CI2N 9/16 (2013.01); CI2N 9/0008 (2013.01); (22) PCT Fled: Dec. 21, 2012 CI2N 9/93 (2013.01); CI2P I3/04 (2013.01); PCT NO.: PCT/US2012/071.472 CI2P 13/001 (2013.01); C12Y 102/0105 (86) (2013.01) S371 (c)(1), (2) Date: Jun. 20, 2014 (57) ABSTRACT Embodiments of the present invention relate to methods for Related U.S. Application Data the biosynthesis of di- or trifunctional C7 alkanes in the (60) Provisional application No.
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Table S2. Enriched GO Categories in Biological Process for the Shared Degs
    Table S2. Enriched GO categories in biological process for the shared DEGs photosynthesis (GO ID:15979) Fold Change ProbeID AGI Col-0(R) pifQ(D) Name Description /Col-0(D) /Col-0(D) A_84_P19035 AT1G30380 17.07 4.9 PSAK; PSAK (PHOTOSYSTEM I SUBUNIT K) A_84_P21372 AT4G12800 8.55 3.57 PSAL; PSAL (photosystem I subunit L) PSBP-1; PSBP-1 (OXYGEN-EVOLVING A_84_P20343 AT1G06680 12.27 3.85 PSII-P; ENHANCER PROTEIN 2); poly(U) binding OEE2; LHCB6; LHCB6 (LIGHT HARVESTING COMPLEX A_84_P14174 AT1G15820 23.9 6.16 CP24; PSII); chlorophyll binding A_84_P11525 AT1G79040 16.02 4.42 PSBR; PSBR (photosystem II subunit R) FAD5; ADS3; FAD5 (FATTY ACID DESATURASE 5); A_84_P19290 AT3G15850 4.02 2.27 FADB; oxidoreductase JB67; GAPA (GLYCERALDEHYDE 3- GAPA; PHOSPHATE DEHYDROGENASE A A_84_P19306 AT3G26650 4.6 3.43 GAPA-1; SUBUNIT); glyceraldehyde-3-phosphate dehydrogenase A_84_P193234 AT2G06520 14.01 3.89 PSBX; PSBX (photosystem II subunit X) LHB1B1; LHB1B1 (Photosystem II light harvesting A_84_P160283 AT2G34430 89.44 32.95 LHCB1.4; complex gene 1.4); chlorophyll binding PSAN (photosystem I reaction center subunit A_84_P10324 AT5G64040 26.14 7.12 PSAN; PSI-N); calmodulin binding LHB1B2; LHB1B2 (Photosystem II light harvesting A_84_P207958 AT2G34420 41.71 12.26 LHCB1.5; complex gene 1.5); chlorophyll binding LHCA2 (Photosystem I light harvesting A_84_P19428 AT3G61470 10.91 5.36 LHCA2; complex gene 2); chlorophyll binding A_84_P22465 AT1G31330 32.37 6.58 PSAF; PSAF (photosystem I subunit F) chlorophyll A-B binding protein CP29 A_84_P190244 AT5G01530 16.45 5.27 LHCB4
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Saturated Long-Chain Fatty Acid-Producing Bacteria Contribute
    Zhao et al. Microbiome (2018) 6:107 https://doi.org/10.1186/s40168-018-0492-6 RESEARCH Open Access Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats Ling Zhao1†, Yufen Huang2†, Lin Lu1†, Wei Yang1, Tao Huang1, Zesi Lin3, Chengyuan Lin1,4, Hiuyee Kwan1, Hoi Leong Xavier Wong1, Yang Chen5, Silong Sun2, Xuefeng Xie2, Xiaodong Fang2,5, Huanming Yang6, Jian Wang6, Lixin Zhu7* and Zhaoxiang Bian1* Abstract Background: The gut microbiota is closely associated with gastrointestinal (GI) motility disorder, but the mechanism(s) by which bacteria interact with and affect host GI motility remains unclear. In this study, through using metabolomic and metagenomic analyses, an animal model of neonatal maternal separation (NMS) characterized by accelerated colonic motility and gut dysbiosis was used to investigate the mechanism underlying microbiota-driven motility dysfunction. Results: An excess of intracolonic saturated long-chain fatty acids (SLCFAs) was associated with enhanced bowel motility in NMS rats. Heptadecanoic acid (C17:0) and stearic acid (C18:0), as the most abundant odd- and even- numbered carbon SLCFAs in the colon lumen, can promote rat colonic muscle contraction and increase stool frequency. Increase of SLCFAs was positively correlated with elevated abundances of Prevotella, Lactobacillus, and Alistipes. Functional annotation found that the level of bacterial LCFA biosynthesis was highly enriched in NMS group. Essential synthetic genes Fabs were largely identified from the genera Prevotella, Lactobacillus, and Alistipes. Pseudo germ-free (GF) rats receiving fecal microbiota from NMS donors exhibited increased defecation frequency and upregulated bacterial production of intracolonic SLCFAs. Modulation of gut dysbiosis by neomycin effectively attenuated GI motility and reduced bacterial SLCFA generation in the colon lumen of NMS rats.
    [Show full text]
  • Spatial Protein Interaction Networks of the Intrinsically Disordered Transcription Factor C(%3$
    Spatial protein interaction networks of the intrinsically disordered transcription factor C(%3$ Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie/Molekularbiologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Von Evelyn Ramberger, M.Sc. Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing.Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Matthias Selbach 3. Prof. Dr. Gunnar Dittmar Tag der mündlichen Prüfung: 12.8.2020 For T. Table of Contents Selbstständigkeitserklärung ....................................................................................1 List of Figures ............................................................................................................2 List of Tables ..............................................................................................................3 Abbreviations .............................................................................................................4 Zusammenfassung ....................................................................................................6 Summary ....................................................................................................................7 1. Introduction ............................................................................................................8 1.1. Disordered proteins
    [Show full text]
  • Adipose Tissue NAPE-PLD Controls Fat Mass Development by Altering the Browning Process and Gut Microbiota
    ARTICLE Received 11 Jul 2014 | Accepted 4 Feb 2015 | Published 11 Mar 2015 DOI: 10.1038/ncomms7495 OPEN Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota Lucie Geurts1, Amandine Everard1,*, Matthias Van Hul1,*, Ahmed Essaghir2, Thibaut Duparc1, Se´bastien Matamoros1, Hubert Plovier1, Julien Castel3, Raphael G.P. Denis3, Marie Bergiers1, Ce´line Druart1, Mireille Alhouayek4, Nathalie M. Delzenne1, Giulio G. Muccioli4, Jean-Baptiste Demoulin2, Serge Luquet3 & Patrice D. Cani1 Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. 1 Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Universite´ catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium. 2 de Duve Institute, Universite´ catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium.
    [Show full text]
  • Crystal Structure of Fabz-ACP Complex Reveals a Dynamic Seesaw-Like Catalytic Mechanism of Dehydratase in Fatty Acid Biosynthesis
    Cell Research (2016) 26:1330-1344. ORIGINAL ARTICLE www.nature.com/cr Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis Lin Zhang1, 2, Jianfeng Xiao3, Jianrong Xu1, Tianran Fu1, Zhiwei Cao1, Liang Zhu1, 2, Hong-Zhuan Chen1, 2, Xu Shen3, Hualiang Jiang3, Liang Zhang1, 2 1Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China; 3State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular me- tabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. How- ever, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic mod- ules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]