bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.898437; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. NvPOU4/Brain3 functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis Océane Tournière1, David Dolan2, Gemma Sian Richards1, Kartik Sunagar,3,4, Yaara Y Columbus-Shenkar3, Yehu Moran3, Fabian Rentzsch1,5* 1 Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway 2 Computational Biology Unit, Department for Informatics, University of Bergen, 5006 Bergen, Norway 3 Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel 4 Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India. 5 Department for Biological Sciences, University of Bergen, 5006 Bergen, Norway corresponding author and lead contact:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.898437; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. SUMMARY Terminal selectors are transcription factors that control the morphological, physiological and molecular features that characterize distinct cell types. Here we use expression analyses and a transgenic reporter line to show that NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types in the sea anemone Nematostella vectensis.