Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions 880 JOURNAL OF APPLIED METEOROLOGY VOLUME 40 Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions. Part I: Evaluation of the Topography Vorticity-Mode Mesoscale Model FERNANDO MARTIÂN,SYLVIA N. CRESPIÂ, AND MAGDALENA PALACIOS Departmento de Impacto Ambiental de la EnergõÂa, Centro de Investigaciones EnergeÂticas, Medioambientales y TecnoloÂgicas, Madrid, Spain (Manuscript received 27 September 1999, in ®nal form 10 August 2000) ABSTRACT The Topography Vorticity-Mode Mesoscale (TVM) model has been evaluated for four different cases of thermal low pressure systems over the Iberian Peninsula. These conditions are considered to be representative of the range of summer thermal low pressure conditions in this region. Simulation results have been compared with observations obtained in two intensive experimental campaigns carried out in the Greater Madrid Area in the summer of 1992. The wind ®elds are qualitatively well simulated by the model. Detailed comparisons of the time series of simulations and observations have been carried out at several meteorological stations. For wind speed and direction, TVM results are reasonably good, although an underprediction of the daily thermal oscillation has been detected. The model reproduces the observed decoupled ¯ow in the nighttime and early morning along with the evolution of mixing layer ¯ow during the day. In addition, the model has simulated speci®c features of the observed circulations such as low-level jets and drainage, downslope, upslope, and upvalley ¯ows. The model also simulates the formation of hydrostatic mountain waves in the nighttime in some cases. 1. Introduction mal low dominates summer atmospheric conditions. In spite of the high frequency of this mesoscale pressure The Greater Madrid Area is located in a 700-m high system in the south of Europe and in other parts of the plateau at the center of the Iberian Peninsula. It is bor- world (Junning et al. 1984; Barry and Chorley 1987), dered to the north-northwest by a high mountain range it has hitherto received little attention from the scienti®c (Sierra de Guadarrama), 40 km from the city, and to the community, and a signi®cant lack of thermal low and northeast and east by lower mountainous terrain. The former and closest is about 200 km long and is aligned associated air circulation studies exist. Although the along the southwest±northeast axis, with a mean altitude thermal low in Spain is more frequent in summer, it has of 2000 m. The highest summit reaches up to 2400 m also been detected at the beginning of autumn and even and is located 50 km northwest of the city. The climate during the last days of winter near to the spring season in Madrid is somewhat extreme, typical of a continental (Font 1983). These infrequent cases are associated with area, with hot dry summers and cold winters, with most weak synoptic conditions, long dry periods, and strong days being under clear-sky conditions. These topograph- surface heat ¯uxes. ic and climatological features along with a heat island Surface heating and atmospheric convective motions effect contribute to complex mesoscale circulations and are the common characteristics in thermal low devel- mixing conditions, which have an important in¯uence opment. However, several peculiarities lead to a signif- on atmospheric pollution episodes. icantly different thermal low in the Iberian Peninsula, The geographical features of the Iberian Peninsula as compared with other countries. The particular hori- and its particular location in the Mediterranean area cre- zontal and vertical sizes (less than 1000 km and 3000 ate speci®c meteorological conditions in which the ther- m, respectively), as well as the high intensity and per- sistence of this mesoscale system, are also related to the geographical location of the Iberian Peninsula, which is almost completely surrounded by sea. Temperature dif- Corresponding author address: Fernando MartõÂn, Grupo de Mo- ferences between the air over the heated ground and air delizacion de la Contaminacion Atmosferica, Dpto. Impacto Am- over the sea, along with mountain range orientation, biental de la EnergõÂa, CIEMAT, Avda. Complutense 22, 28040 Ma- drid, Spain. produce strong air convergence, which is channeled by E-mail: [email protected] the main mountain valleys (MillaÂn et al. 1991). A strong q 2001 American Meteorological Society Unauthenticated | Downloaded 09/28/21 09:22 PM UTC MAY 2001 MARTIÂ N ET AL. 881 reduction of the inland surface pressure reaches a max- Portela (1994) and Portela and Castro (1996) using the imum in the early afternoon, when heating of the ground PronoÂstico a Mesoscala (PROMES) model (Gaertner is most marked and when convective air cells are com- 1994) and by Ibarra et al. (1994) using the Regional pletely developed. When the solar energy begins to de- Atmospheric Modeling System (RAMS) model. In both crease, a slow dissipation of the thermal low takes place cases, working with almost the same spatial domain (the until it disappears during night hours. Therefore, the entire Iberian Peninsula), the main features of the ther- thermal low is a 24-h meteorological system clearly mal low were well simulated, but differences were found associated with intense solar radiation over the arid re- in predicting smaller-scale ¯ows, such as circulations in gions. Portela and Castro (1991) presented a climatic the plateaus and in areas near large mountain ranges. description of thermal lows in the Iberian Peninsula. In the PROMES simulation, the horizontal grid spacing They found the formation of thermal low pressure sys- was 20 km 3 20 km, and hence smaller-scale ¯ows tems over the Iberian peninsula is very related to the were better resolved than with the RAMS simulations, de®cit of evaporation in semiarid soils. It could explain for which the horizontal resolution was 32 km 3 32 why the thermal lows also can be observed in spring or km. early autumn but being less frequent than in summer- In contrast with these regional-scale modeling studies time. They also made a high-resolution analysis of the simulating the ¯ows over the entire Iberian Peninsula, pressure ®elds that allowed a classi®cation of the ther- this paper is focused on the meso-b-scale modeling in mal low systems taking into account the location of the a smaller area of it. The current work is presented in area of maximum pressure gradient and the thermal low two parts. Part I is presented in this ®rst paper. The intensity. objective is to evaluate the performance of the Topog- Extensive experimental documentation about the be- raphy Vorticity-Mode Mesoscale (TVM) model in sim- havior of air convergence under summer thermal low ulating the evolution of the meso-b-scale atmospheric conditions exists (MillaÂn et al. 1991; MartõÂn and Pal- conditions in the center of the Iberian Peninsula under omino 1995). These studies prove that the thermal low the forcing of a summer thermal low pressure system. and sea breezes force an inward ¯ow of coastal pollutant To do this, the TVM predictions in the Greater Madrid emissions toward the center of the Iberian Peninsula. Area are compared with wind and temperature obser- The strong links between the local air circulation of the vations from the surface and upper-air meteorological sea breeze and this mesoscale system are related to the stations for four different cases of thermal low pressure particular orientation of mountain valleys near the Span- situations. The paper includes a description of the TVM model, the cases selected for modeling, the data sources, ish coast that favors inland air motions. Moreover, the and the model con®guration, along with a discussion of strong heating of the Iberian Peninsula soils can inten- the model results compared with observations. sify the inland penetration of air masses. Experimental In Part II (Martin et al. 2001), the variability of pol- results have shown that sea-breeze penetration is sig- luted air parcel trajectories computed with the TVM ni®cantly greater when air convergence associated with model in the Greater Madrid Area under thermal low thermal low conditions interacts with the sea-breeze cir- pressure conditions is discussed. culation (MartõÂn and Palomino 1995). Furthermore, the The practical use of a mesoscale meteorological mod- thermal low can inject pollutant air masses to upper el requires understanding its characteristics and range atmospheric levels, where they can then be transported of application. For the quanti®cation of the accuracy of long distances. model results, it is also necessary to estimate input data Under thermal low conditions, the local air circulation accuracy and how it affects the results, to evaluate the over the central plateaus of the Iberian Peninsula, where uncertainties in model assumptions and parameteriza- the convergence zone is usually located, can be very tions, and to judge how the model represents reality. different. Extensive instrumentation deployment over The evaluation procedure will ensure that users can as- the Madrid area (Plaza et al. 1997) has allowed detection sess the degree of reliability and accuracy inherent in of signi®cant differences of air circulations when ther- the model (Moussiopoulos 1996). mal low conditions affect the Iberian Peninsula. These The mesoscale prognostic TVM model has been eval- differences could explain the levels of pollutants de- uated previously to simulate the atmospheric ¯ows for tected in the center of Spain. winter anticyclonic conditions in the center of the Ibe- Several works have been devoted to modeling the rian Peninsula. Model results agreed in signi®cant as- complete thermal low pressure system structure. In the pects with observed wind ¯ows over the Greater Madrid case of large tropical thermal lows, Leslie (1980) in- Area under anticyclonic conditions in wintertime, for corporated a simple surface heat balance scheme into a example, the daily cycle of thermally driven ¯ows, the large-scale numerical forecast model for Australia.
Recommended publications
  • Estudio Territorial Extremadura II EL SISTEMA FISICO - NATURAL
    Estudio Territorial Extremadura II EL SISTEMA FISICO - NATURAL ESTUDIO TERRITORIAL EXTREMADURA II TOMO I EL SISTEMA FÍSICO - NATURAL DICIEMBRE 1.996 Estudio Territorial Extremadura II EL SISTEMA FISICO - NATURAL INDICE TOMO I 1. INTRODUCCION. EL ESTUDIO TERRITORIAL EXTREMADURA II 1 2. LAS GRANDES UNIDADES MORFOESTRUCTURALES DE EXTREMADURA 6 2.1. SIERRA DE GATA - LAS HURDES 10 2.2. TERMINACIÓN ORIENTAL DEL MACIZO DE GREDOS 10 2.3. LLANURA DEL ALAGÓN 10 2.4. CAMPO ARAÑUELO (EL TAJO) 11 2.5. LAS VILLUERCAS 12 2.6. LA MESETA CACEREÑA 13 2.7. ALINEACIÓN DE LA SIERRA DE SAN PEDRO, SIERRA DE MONTÁNCHEZ 13 2.8. VEGAS DEL GUADIANA 14 2.9. OSSA MORENA OCCIDENTAL: SIERRAS DE JEREZ - UMBRAL DE ZAFRA 15 2.10. OSSA MORENA ORIENTAL: LLANOS Y SIERRAS DE LLERENA 15 2.11. LA SERENA 16 3. GEOLÓGÍA 17 3.1. INTRODUCCION Y ENCUADRE GEOLOGICO 17 3.1.1. LAS GRANDES UNIDADES TECTONOESTRATIGRÁFICAS 17 3.1.1.1. Zona Centro - Ibérica 18 3.1.1.2. Zona de Ossa Morena 19 3.1.1.3. Propuesta de síntesis geológica del suroeste ibérico 19 3.2. ESTRATIGRAFIA 24 3.2.1. PRECÁMBRICO 24 3.2.1.1. Terreno de Valencia de las Torres - Cerro Muriano 24 3.2.1.2. Terreno de Sierra Albarrana 26 3.2.1.3. Depósitos sinorogénicos finiprecámbricos 27 3.2.2. PALEOZOICO 30 3.2.2.1. Cámbrico 30 3.2.2.2. Paleozoico inferior - medio 33 3.2.2.3. Carbonífero 37 Estudio Territorial Extremadura II EL SISTEMA FÍSICO - NATURAL 3.2.3. NEÓGENO - CUATERNARIO 39 3.2.3.1.
    [Show full text]
  • Social Science
    3 Social Science Social Science Learning Lab is a collective work, conceived, designed and created by the Primary Educational department at Santillana, under the supervision of Teresa Grence. WRITERS Natalia Gómez María More ILLUSTRATIONS Dani Jiménez Esther Pérez-Cuadrado SCIENCE CONSULTANT Raquel Macarrón EDITOR Sara J. Checa EXECUTIVE EDITOR Peter Barton BILINGUAL PROJECT COORDINATION Margarita España Do not write in this book. Do all the activities in your notebook. Contents Get started! .............................. 6 1 The relief of Spain ................ 8 2 Our rivers ............................ 22 Learning Lab game ............. 36 3 We live in Europe ................ 38 4 Our world ........................... 52 Learning Lab game ............. 66 5 Studying the past ............... 68 6 Discovering history ............. 82 Learning Lab game ............. 96 Key vocabulary ................... 98 three 3 UNIT CONTENTS RAPS MINI LAB / BE A GEOGRAPHER! FINAL TASK 1 • Inland and coastal landscape features • Main features of the relief of Spain The relief rap • Compare landscapes Expedition to an autonomous community The relief of Spain • Parts of a mountain • Highest mountains and mountain • Mountain presentation ranges in Spain • Relief maps • How do you read a relief map? 2 • Types of rivers • River maps The river rap • How are watersheds similar Expedition on a river Our rivers • Parts of a river • Cantabrian rivers • How do you read a watershed map? • Features of a river • Atlantic rivers • Spanish rivers • Mediterranean rivers
    [Show full text]
  • Capítulo 7 LIBRO GEOLOGÍA DE ESPAÑA Sociedad Geológica De España Instituto Geológico Y Minero De España
    Capítulo 7 LIBRO GEOLOGÍA DE ESPAÑA Sociedad Geológica de España Instituto Geológico y Minero de España 1 Índice Capítulo 7 7- Estructura Alpina del Antepaís Ibérico. Editor: G. De Vicente(1). 7.1 Rasgos generales. G. De Vicente, R. Vegas(1), J. Guimerá(2) y S. Cloetingh(3). 7.1.1 Estilos de deformación y subdivisiones de las Cadenas cenozoicas de Antepaís. G. De Vicente, R. Vegas, J. Guimerà, A. Muñoz Martín(1), A. Casas(4), N. Heredia(5), R. Rodríguez(5), J. M. González Casado(6), S. Cloetingh y J. Álvarez(1). 7.1.2 La estructura de la corteza del Antepaís Ibérico. Coordinador: A. Muñoz Martín. A. Muñoz-Martín, J. Álvarez, A. Carbó(1), G. de Vicente, R. Vegas y S. Cloetingh. 7.2 Evolución geodinámica cenozoica de la Placa Ibérica y su registro en el Antepaís. G. De Vicente, R. Vegas, J. Guimerà, A. Muñoz Martín, A. Casas, S. Martín Velázquez(7), N. Heredia, R. Rodríguez, J. M. González Casado, S. Cloetingh, B. Andeweg(3), J. Álvarez y A. Oláiz (1). 7.2.1 La geometría del límite occidental entre África y Eurasia. 7.2.2 La colisión Iberia-Eurasia. Deformaciones “Pirenaica” e “Ibérica”. 7.2.3 El acercamiento entre Iberia y África. Deformación “Bética”. 7.3 Cadenas con cobertera: Las Cadenas Ibérica y Costera Catalana. Coordinador: J. Guimerá. 7.3.1 La Cadena Costera Catalana. J. Guimerà. 7.3.2 La Zona de Enlace. J. Guimerà. 7.3.3 La unidad de Cameros. J. Guimerà. 7.3.4 La Rama Aragonesa. J. Guimerà. 7.3.5 La Cuenca de Almazán.
    [Show full text]
  • A Typological Calssification Os Spanish Precious Metals Deposits
    Caderno Lab. Xeolóxico de Laxe Coruña. 1995. Vol. 20, pp. 253-279 A typological classification ofSpanish precious metals deposits Clasificación tipológica de los yacimientos españoles de metales nobles CASTROVIE]O, R. Last decade's intensive exploration for precious metals in Spain led to a new understanding ofvarious types ofdeposits and prospects. A summary review of recent progress is presented, allowing the systematic (typological) classification ofthe Spanish precious metals deposits shown in Table 1: 19 types are defined in the framework ofthe Iberian Geology, their exploration significance being also considered. Hypogene deposits in the Hercynian Hesperian Massif, and epithermal gold deposits in the Neogene calc-alcaline Volcanic Province ofSE Spain have been very much explored and are therefore emphasized, although their mining production is by far not to compare with the precious metals output the SWIPB (SW Iberian Pyrite Belt). IntheHesperian Massif, different metalloterts have beendemonstrated tobe related toattractiveconcentrations ofgold, bound to Hercynianshear-zones, inGalicia, in Extremadura, etc.; other concentrations (e. g., in Galicia and Asturias) are related to granite or porphyry intrusions (Salave) and skarn formations (Carlés). PGE or Platinum elements (± chromite) have been found in ophiolitic thrust complexes occurring in N Galicia, e. g. the HerbeiraMassifofthe Cabo Ortegal Complex, as had been in the 1940's in N orthern Portugal(Bragan\aand Morais complexes). Exploration for silver has demonstrated a small orebody in Fuenteheridos (Aracena, SW Spain), not minable under severe environmental constraints, but none ofthe classic Spanish silver producing districs (vein-Type deposits, e. g. Guadalcanal or Hiendelaencina) has recovered activity. Most ofthe EU (European Union) gold and silver production is won from only two types ofdeposits in the Spanish Hesperian Massif: the masive sulphides of the SWIPB, in which precious metals are won as by-products, and the related gossan deposits.
    [Show full text]
  • El Glaciarismo En La Península Ibérica
    EL GLACIARISMO EN LA PENÍNSULA IBÉRICA EL FENÓMENO GLACIAR CUATERNARIO EN LA PENÍNSULA IBÉRICA Quaternary Glaciation in the Iberian Peninsula Eduardo Acaso Deltell (*) RESUMEN Se describe el fenómeno glaciar pleistoceno que afectó a las principales cadenas montañosas de la península. Se define el glaciarismo como de montaña con formación de glaciares de valle (donde son abundantes los aparatos de decenas de Km de longitud) y formas menores así como glaciares rocosos y, en algún caso, de montera. El mayor desarrollo se produjo en los Pirineos en donde aún existen glaciares funcionales. El modelo de evolución consta de un máximo (en torno a 70.000-38.000 BP para la cadena pirenaica) y un período de estabilización a partir del cual se da un retroceso generalizado en donde, en la mayoría de los macizos, puede hablarse de un episodio de glaciares de valle, otro de glaciares de circo y un Tardiglaciar (entre 17.300 y 9.000 BP) definido por glaciares residuales. Finalmente, en algunas ca- denas se detecta una reactivación del fenómeno glaciar durante la Pequeña Edad del Hielo (siglos XIII- XIX). ABSTRACT This is a description of the glacial processes that affected the Iberian Peninsula along the Quaternary. Mountain glaciers (valley, cirque and rock-glacier) can be identified. The maximum development was concentrated in the Pyrenees (where still survive some active glaciers) and this maximum happened ap- proximately between 70000 and 38000 years BP. Later, a retreat period affect most areas of the Iberian Peninsula, leaving a period of valley glaciers, a period of cirque glaciers and a late-glacial period (17300-9000 y BP) with only residual glaciers.
    [Show full text]
  • Castilla Y Leon CONTENTS
    Spain Castilla y Leon Avila Burgos Leon Palencia Salamanca Segovia Soria Valladolid Zamora CONTENTS Introduction 1 A walk through the capital cities Avila 8 Burgos 11 Leon 14 Palencia 17 Salamanca 20 Dublín United Kingdom Segovia 23 Soria 26 Ireland London Valladolid 29 Zamora 32 Enjoying Castilla y Leon 35 Avila. The circus of Gredos 36 París Burgos. Heart of Castille 38 Leon. The Road to Santiago 40 France Palencia. The romanesque 42 Salamanca. The mountains 44 Segovia. The Royal Houses 46 Cantabrian Sea Soria. The lands of el Cid 48 Valladolid. Vineyards and monasteries 50 Castilla y León Zamora. Lakes of Sanabria 52 Leisure and entertainment 54 Madrid Useful information 60 Portugal Lisbon Spain Mediterranean Sea Melilla Ceuta Text: Printed by: Javier Tomé GAEZ, S.A. Translation: D.L. M-24401-2000 Alistair Louis Ross Morocco Maqueta: NIPO: 104-99-042-7 OPCIÓN K, Comunicación Visual, S.L. Printed in Spain Photographs: Archivo Turespaña 1st edition Published by © Turespaña Secretaría de Estado de Comercio y Turismo Ministerio de Economía Introduction the largest region in the European Union. TERRITORY The basic axis of the territory is the basin of the river Duero, If there is one word that sums the largest in Spain. The major up the complex reality of the communication routes region of Castilla y Leon, that between the capital Madrid and word is “monumental”. the Atlantic regions all run Everything about the geography through here. Castilla y Leon, and the culture of this Region, then, is situated in the northern strategically situated in the part of the central Spanish north-east Iberian Peninsula, is plateau.
    [Show full text]
  • Comparative Chorology Between Podarcis Bocagei and P. Carbonellae
    Rev. Esp. Herp. (2001) 15:85-97 85 Comparative chorology between Podarcis bocagei and P.carbonellae (Sauria: Lacertidae) in Portugal PAULO SÁ-SOUSA Lab. Biologia da Conservação Dep. Biologia, Univ. Évora P-7002-544 Évora, Portugal. e-mail: [email protected] Abstract: The geographic distributions of the Bocage’s wall lizard, Podarcis bocagei and the Carbonell’s wall lizard, P. carbonellae in Portugal were determined through extensive field surveys. The river Douro constitutes the main geographical barrier where both lizard species show nearby a zone of contact. Predictive models of probability of occurrence were developed for both species in Portugal, based on the Logistic Multiple Regres- sion (LMR) and the Overlap Analysis (OA). On a coarse scale, the best-fit model suggested that the distribution of P. bocagei in Portugal might be largely explained by macroenvironmental variables such as radiation, eva- potranspiration or type of climate. The balance between the number of frost days per year and a coefficient of aridity (Kdr = 100 × temperature/precipitation) seems important to explain the range of P. carbonellae. Howe- ver, the large overlap found between predictive areas strongly suggest that historical events (e.g. Pliocene spe- ciation, Pleistocene glacial refugia) might have been preponderant, acting the macroenvironmental factors as ultimate determinants of the present-day distribution of both species. The distribution of P. bocagei is signi- ficantly congruent with that of Chioglossa lusitanica, partially with Vipera seoanei and with Rana iberica and Lacerta schreiberi northwards the river Douro. Conversely, the contractive distribution of P. carbonellae did not share any significant pattern of congruence with the latter taxa.
    [Show full text]
  • (Iberian Massif) Using Global-Phase Seismic Interferometry
    Lithospheric image of the Central Iberian Zone (Iberian Massif) using Global-Phase Seismic Interferometry Juvenal Andrés1,3, Deyan Draganov2, Martin Schimmel1, Puy Ayarza3, Imma Palomeras3, Mario 5 Ruiz1, Ramon Carbonell1 1Institut of Earth Science Jaume Almera (ICTJA), 08028, Barcelona, Spain 2Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands 10 3Department of Geology, University of Salamanca, 37008, Salamanca, Spain Correspondence to: Juvenal Andrés ([email protected]) Abstract. 15 The Spanish Central System is an intraplate mountain range that divides the Iberian Inner Plateau in two sectors – the northern Duero Basin and the Tajo Basin to the south. The topography of the area is highly variable with the Tajo Basin having an average altitude of 450-500 m while the Duero Basin presents a higher average altitude of 750-800 m. The Spanish Central System is characterized by a thick-skin pop-up and pop-down configuration formed by the reactivation of Variscan structures during the Alpine Orogeny. The high topography is, most probably, the response of a tectonically 20 thickened crust that should be the response to 1) the geometry of the Moho discontinuity 2) an imbricated crustal architecture and/or 3) the rheological properties of the lithosphere. Shedding some light about these features are the main targets of the current investigation. In this work, we present the lithospheric-scale model across this part of the Iberian Massif. We have used data from the CIMDEF project, which consists of recordings of an almost-linear array of 69 short- period seismic stations, which define a 320 km long transect.
    [Show full text]
  • (Sistema Central). Análisis Polínico De La Turbera De Pelagallinas
    EVOLUCIÓN DE LA VEGETACIÓN EN EL SECTOR SEPTENTRIONAL DEL MACIZO DE AYLLÓN (SISTEMA CENTRAL). ANÁLISIS POLÍNICO DE LA TURBERA DE PELAGALLINAS por FÁTIMA FRANCO MÚGICA ', MERCEDES GARCÍA ANTÓN2, JAVIER MALDONADO RUIZ! CARLOS MORLA JUARISTI' & HELIOS SAINZ OLLERO5 1 Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid. E-28049 Cantoblanco, Madrid ([email protected]) 2 Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid. E-28049 Cantoblanco, Madrid ([email protected]) 3 Departamento de Silvopascicultura (Botánica), Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid. E-28040 Madrid ([email protected]) 4 Departamento de Silvopascicultura (Botánica), Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid. E-28040 Madrid ([email protected]) 5 Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid. E-28049 Cantoblanco, Madrid ([email protected]) Resumen FRANCO MÚGICA, F., M. GARCÍA ANTÓN, J. MALDONADO RUIZ, C. MORLA JUARISTI & H. SAINZ OLLERO (2001). Evolución de la vegetación en el sector septentrional del macizo de Ayllón (Sistema Central). Análisis polínico de la turbera de Pelagallinas. Anales Jard. Bot. Madrid 59(1): 113-124. Se analiza polínicamente una turbera que abarca los últimos 4000 años y que se ubica en la Sie- rra de Alto Rey, en la parte oriental del Sistema Central (Guadalajara). Su estudio pone de ma- nifiesto la importancia de los pinares que fueron sustituidos en determinados momentos por brezales coincidiendo con incendios detectados por el incremento de partículas de carbón. El abedul estuvo refugiado en áreas turbosas, llegando a desaparecer en el último milenio.
    [Show full text]
  • Extremadura, Localización Y Rasgos Geográficos
    EXTREMADURA, LOCALIZACIÓN Y RASGOS GEOGRÁFICOS Trabajo del Grupo Comenius GRUPO 5 4º ESO José Ángel González Méndez Santos Villafaina Eduardo Pastelero 1 Índice 1. Situación Geográfica de Extremadura. 2. Relieve. 3. Clima. 4. Hidrografía. 5. Espacios naturales. 6. Vegetación. 7. Población. 8. Economía. Fotografías de algunas poblaciones y lugares más representativos de la región extremeña 2 EXTREMADURA, LOCALIZACIÓN Y RASGOS GEOGRÁFICOS 1. SITUACIÓN GEOGRÁFICA Extremadura, comunidad autónoma formada por las 2 provincias españolas de mayor extensión, Cáceres y Badajoz. Está situada en el oeste de España y limitada al norte con Castilla-La Mancha, al sur con Andalucía y al oeste con Portugal. MAPA DE EXTREMADURA 3 2. RELIEVE Las principales unidades del relieve son: el sistema Central al norte, la prolongación de los montes de Toledo en el centro, sierra Morena al sur y una amplia penillanura que ocupa toda la zona central y que es la parte más representativa y conocida del paisaje extremeño. La sierra de Gata y el sector más occidental de la sierra de Gredos son las unidades del sistema Central que se encuentran en la parte septentrional de Extremadura, con altitudes superiores a los 2.000 metros. Son montañas con numerosas gargantas. Al este de la extensa penillanura que va desde Trujillo hasta la ciudad de Cáceres se alzan Las Villuercas (1.601 m), el macizo más elevado de los montes de Toledo en Extremadura. Las tierras llanas y las vegas al sur del Guadiana son las zonas agrícolas más importantes. El extremo occidental de sierra Morena constituye el área montañosa del sur extremeño.
    [Show full text]
  • Downloaded from Brill.Com09/23/2021 11:57:05AM Via Free Access M
    Bijdragen tot de Dierkunde, 63 (1) 3-14 (1993) SPB Academie Publishing bv, The Hague Morphological characterization, cytogenetic analysis, and geographical distribution of Marbled Newt Triturus the Pygmy marmoratus pygmaeus (Wolterstorff, 1905) (Caudata: Salamandridae) M. García-París P. Herrero C. Martín J. Dorda M. Esteban & B. Arano Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, E-28006 Madrid, Spain Keywords: Taxonomy, cytogenetics, Salamandridae, Triturus, Iberian Peninsula T. m. mar- T. Abstract moratus o a m. pygmaeus. Estos rasgos se aplican a series de individuos procedentes de colecciones científicas o bien observa- dos directamente sobre el terreno. Como consecuencia de la Triturus marmoratuspygmaeus, a problematicsubspecies of the aplicación de estos criterios, el área de distribución de T. m. pyg- Marbled Newt from the southern part of the Iberian Peninsula, maeus se extiende considerablemente hacia el norte. La distribu- is redescribed using specimens collected in the “typical” area. la ción de T. m. marmoratus incluye mitad septentrional de la external features Diagnostic morphological are provided to per- Península Ibérica y la mayor parte de Francia, mientras que T. mit the accurate determination ofthe specimens belonging either m. pygmaeus ocupa unaampliaporción en la región sudocciden- T. T. These to m. marmoratus or to m. pygmaeus. diagnostic tal de la Península Ibérica. La zona de contacto entre ambas features were applied to individuals both from the field and subespecies parece localizarse a lo largo del Sistema Central en from museum collections. The results indicate a larger distribu- Portugal y España. T. m. marmoratus sobrepasa hacia el sur el tional area for T. m.
    [Show full text]
  • El Relieve De España
    CEIP Madre de la Luz José Antonio Manzano Cara TEMA 8.- EL RELIEVE DE ESPAÑA 1.-EL RELIEVE DE ESPAÑA.- El territorio de España comprende buena parte de la península Ibérica, las islas Baleares, las islas Canarias y Ceuta y Melilla, en el norte de África. 1.1.-Unidades del relieve.- El relieve de España se caracteriza por su gran diversidad y está organizado de la siguiente forma: • La Meseta Central que ocupa el centro de la Península. • Tres grupos de sistemas montañosos: los del interior de la Meseta, los que bordean la Meseta y los exteriores de la Meseta. • Dos depresiones exteriores: la del Ebro y la del Guadalquivir. • El relieve de los archipiélagos de Baleares y de Canarias. 1.2.-La Meseta Central.- La Meseta Central es una gran llanura elevada, que ocupa el centro de la Península y está inclinada hacia el oeste, por eso los ríos que la recorren llevan sus aguas al océano Atlántico. En la Meseta Central se distinguen varias zonas: los páramos, las campiñas y las vegas. La Meseta se extiende por las Comunidades de Castilla y león, Castilla-La Mancha y Extremadura. El Sistema Central divide la Meseta en dos zonas: la Submeseta Norte, recorrida por el río Duero; y la Submeseta Sur, recorrida por los ríos Tajo y Guadiana. Tercer Ciclo de Educación Primaria Conocimiento del Medio 5º CEIP Madre de la Luz José Antonio Manzano Cara 2.-LOS TRES GRUPOS DE SISTEMAS MONTAÑOSOS.- 2.1.-Las montañas interiores a la Meseta.- Las montañas del interior de la Meseta son: • El Sistema Central recorre la Meseta por su centro y está formado por las sierras de Somosierra, Guadarrama, Gredos y Gata.
    [Show full text]