Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment fibers Article Development of a Thulium Fiber Laser for an Atomic Spectroscopy Experiment Ronnie Currey *, Ali Khademian and David Shiner Department of Physics, University of North Texas, Denton, TX 76203, USA; [email protected] (A.K.); [email protected] (D.S.) * Correspondence: [email protected] Received: 20 December 2019; Accepted: 9 February 2020; Published: 15 February 2020 Abstract: A convenient thulium fiber laser source is described with 3 W of output power operating at a wavelength of 2059 nm with a slope efficiency of 49% with respect to input pump power and 60% with respect to absorbed pump power. The laser was applied in an atomic helium spectroscopy 3 4 1 experiment to quench He (2058.63 nm) and He (2058.69 nm) meta-stable singlets (2 S0), allowing for further investigation of the helium fine structure. The customized laser effectively eliminates the singlet counts to well below a background level (1%). A simplified analysis describes the basic laser performance with fitted constants in reasonable agreement with previous work. Keywords: fiber; laser; fiber laser; thulium; thulium fiber laser; optics; rare-earth elements; spectroscopy 1. Introduction The key benefits of double clad single transverse mode fiber lasers have been well established, such as efficient and powerful pumping, alignment ease and stability, good heat dissipation due to large surface area to volume ratio, and excellent beam quality [1,2]. For spectroscopic applications, small diameters (typically 250 µm) and long fiber lengths allow for both compact designs and dense mode spacing to conveniently excite very narrow spectral lines. Fiber Bragg gratings are frequently employed to create the laser cavity inside the fiber and select the necessary wavelength and bandwidth. Grating centers can be tuned with temperature for fine control of output wavelength ( 0.02 nm/C for ≈ 2 µm). ≈ Silica (Si) with rare-earth (RE) do-pants provide very broad homogeneous fluorescent emission. When placed in a silica glass host, thulium (Tm) has several different absorption bands, located at 3 3 790 nm, 1210 nm, and 1670 nm [3,4]. The emission spectrum for the F4- H6 transition spans about 400 nm, ranging between 1700 nm to 2100 nm [5]. This emission range extends into the eye-safe regime and has many applications such as laser detection and ranging (LIDAR) for wind shear detection radar, remote sensing, atmospheric pollution monitoring, surgery, range finders, as well as for inducing transitions in atomic spectroscopy experiments [6]. Fiber coupled laser diodes emitting around 790 nm are capable of generating high signal powers especially when employing cladding pumped schemes [7–9].Thulium can be pumped at any of the wavelength bands shown in Figure1, but the 790 nm band is of particular interest because at high doping ( 4%–6%) it yields a near 2 for 1 cross relaxation process populating the upper lasing level, ≈ where the cross relaxation efficiency can be defined as the average number of lasing levels created per pump photon absorbed and increases the overall efficiency that would otherwise be limited to the usual quantum defect between lasing and pump frequencies [10]. Efficiencies have been reported to exceed 60% [3,11]. Fibers 2020, 8, 12; doi:10.3390/fib8020012 www.mdpi.com/journal/fibers Fibers 2020, 8, 12 2 of 7 Fibers 2020, 8, x 2 of 7 FigureFigure 1.1. Energy Levels of Thulium.Thulium. 2. Materials and Methods 2. Materials and Methods 2.1. Laser Design 2.1. Laser Design The laser described in this report is pumped with a diode module centered at 793 nm with a maximumThe laser output described power in of this 8 W report (BWT Beijing),is pumped see wit Figureh a diode2. This module pump lasercentered is fiber at 793 coupled nm with with a 105maximumµm/125 outputµm NA power= 0.15 of fiber 8 W and (BWT has aBeijing), bandwidth see Figure of 3 nm. 2. ItThis also pump is built laser with is feedback fiber coupled protection with between105 µm/125 1900–2000 µm NAnm. = 0.15 The fiber diode and module has a bandwidth is fused to of a 3 (2 nm.+ 1) It also1 multi-mode is built with pump feedback combiner protection (ITF × Technologies)between 1900 to–2000 facilitate nm. The launching diode themodule pump is powerfused intoto a the(2 + active 1) × 1 fiber. multi For-mode this pump experiment, combiner only (ITF one ofTechnologies) the combiner’s to facilitate input ports launching was used. the pump The input power was into designed the active to match fiber. For the pumpthis experiment, laser fiber only and soone had of the 105 combiner’sµm/125 µm input NA = ports0.15 fiberwas used. on the The input input pump was side.designed The signalto match side the had pump 10 µ mlaser/125 fiberµm lowand indexso had double 105 µm/125 clad NAµm =NA0.46 = 0.15 fiber fiber to matchon the theinput active pump fiber. side. We The measured signal side 95% had pump 10 µm/125 beam µm low index double clad NA = 0.46 fiber to match the active fiber. We measured 95% pump beam combiner efficiency and 99% transmission efficiency between the combiner signal ports (called Tc below).combiner Launching efficiency the and pump 99% powertransmission from the effic combineriency between into the the 10 µcombinerm/130 µm signal low indexports Tm(called active Tc fiberbelow). was Launching more diffi thecult pump than we power had expected.from the combiner The 3 cm into of the low 10 index µm/130 recoat µm was low determined index Tm active to be ≈ responsiblefiber was more for mostdiffic ofult the than coupling we had loss.expected. With improvementsThe ≈3 cm of low in cleanlinessindex recoat and was technique, determined the to loss be wasresponsible reduced for to most 5%, as ofverified the coupling by cutback loss. With experiments. improvements Nevertheless, in cleanliness simple and observation technique, withthe loss an opticalwas reduced microscope to 5%, indicates as verified the by index cutback uniformity experiments. of the recoated Nevertheless, fiber was simple not nearlyobservation as uniform with an as theoptical commercial microscope fiber. indicates The active the index fiber consists uniformity of 2.15 of the m ofrecoated thulium fiber doped was 10 notµ mnearly/130 µ asm uniform low index as the commercial fiber. The active fiber consists of 2.15 m of thulium doped 10 µm/130 µm low index NA = 0.46 fiber (Nufern, East Granby, CT, USA) designed to give a truly single-mode profile (TEM00). TheNA thulium= 0.46 fiber fiber (Nufern has a, claddingEast Granby, absorption CT, USA of) 4.6designed dB/m atto 793give nm. a truly This single fiber-mode is expected profile to (TEM absorb00). nominallyThe thulium 90% fiber of the has pump a clad lightding launched absorption into of the 4.6 gain dB/m fiber at (7%793 wasnm. measuredThis fiber exitingis expected the back to absorb which isnominally consistent 90% with of athe 90% pump absorption light launched and the subsequentinto the gain losses fiber through (7% was grating measured and exiting recoat sections).the back Thewhich gain is lengthconsistent was with chosen a 90% basically absorption by balancing and the the subsequent cost of lost losses pump through photons grating versus and the costrecoat of additionalsections). The Tm gain fiber. length The frequency was chosen mode basically spacing by ofbalancing the overall the cavitycost of length lost pump (c/2nL photons= 150 MHz)versus was the alreadycost of additional dense enough Tm tofiber. overlap Thethe frequency broad spectral mode featurespacing (300 of the MHz overall FWHM), cavity so nolength additional (c/2nL length = 150 MHz) was already dense enough to overlap the broad spectral feature (300 MHz FWHM), so no was needed. The absorbed pump power Pabs in terms of the diode power Pdiode is given by: additional length was needed. The absorbed pump power Pabs in terms of the diode power Pdiode is given by: P = ηp P (1) abs ∗ diode 푃abs = 휂p ∗ 푃diode (1) Fibers 2020, 8, x 3 of 7 Fiberswith 2020an ,absorption8, 12 efficiency ηp of 81%, given by the product of the beam combiner (0.95), launch3 of 7 (0.95),Fibers 20 and20, 8 , absorptionx (0.90) efficiencies. 3 of 7 withwith anan absorptionabsorption eefficiencyfficiency ηηpp of 81%,81%, givengiven byby thethe productproduct ofof thethe beambeam combinercombiner (0.95),(0.95), launchlaunch (0.95),(0.95), andand absorptionabsorption (0.90)(0.90) eefficiencies.fficiencies. Figure 2. Thulium Fiber Laser Schematic. The laser cavity is created by employing a highly reflective fiber Bragg gating (R1 ≈ 99.7% FigureFigure 2.2. Thulium Fiber Laser Schematic.Schematic. inferred from an optical spectrum analyzer measurement of T1 = 0.3% as supplied by the vendor, O/E Land).The It laseris centered cavity isat created2058.45 by nm employing with a bandwidth a highly reflective of 1.2 nm. fiber The Bragg grating gating is fused (R1 to99.7% the back inferred end The laser cavity is created by employing a highly reflective fiber Bragg gating≈ (R1 ≈ 99.7% fromof the an active optical fiber spectrum and the analyzer Fresnel measurement reflection of ofR2T =1 3.3%= 0.3% forms as supplied the output by the coupler vendor, at O the/E Land).front end. It is inferred from an optical spectrum analyzer measurement of T1 = 0.3% as supplied by the vendor, O/E centeredThe fiber at Bragg 2058.45 grating nm with (FBG) a bandwidth was designed of 1.2 to nm. insure The gratingthe laser is bandwidth fused to the easily back endoverlapped of the active the Land). It is centered at 2058.45 nm with a bandwidth of 1.2 nm.
Recommended publications
  • High-Power Solid-State Lasers from a Laser Glass Perspective
    LLNL-JRNL-464385 High-Power Solid-State Lasers from a Laser Glass Perspective J. H. Campbell, J. S. Hayden, A. J. Marker December 22, 2010 Internationakl Journal of Applied Glass Science Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. High-Power Solid-State Lasers from a Laser Glass Perspective John H. Campbell, Lawrence Livermore National Laboratory, Livermore, CA Joseph S. Hayden and Alex Marker, Schott North America, Inc., Duryea, PA Abstract Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high- power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses.
    [Show full text]
  • Rare Earth Elements: the Global Supply Chain
    Rare Earth Elements: The Global Supply Chain Marc Humphries Analyst in Energy Policy September 30, 2010 Congressional Research Service 7-5700 www.crs.gov R41347 CRS Report for Congress Prepared for Members and Committees of Congress Rare Earth Elements: The Global Supply Chain Summary The concentration of production of rare earth elements (REEs) outside the United States raises the important issue of supply vulnerability. REEs are used for new energy technologies and national security applications. Is the United States vulnerable to supply disruptions of REEs? Are these elements essential to U.S. national security and economic well-being? There are 17 rare earth elements (REEs), 15 within the chemical group called lanthanides, plus yttrium and scandium. The lanthanides consist of the following: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Rare earths are moderately abundant in the earth’s crust, some even more abundant than copper, lead, gold, and platinum. While more abundant than many other minerals, REE are not concentrated enough to make them easily exploitable economically. The United States was once self-reliant in domestically produced REEs, but over the past 15 years has become 100% reliant on imports, primarily from China, because of lower-cost operations. There is no rare earth mine production in the United States. U.S.-based Molycorp operates a separation plant at Mountain Pass, CA, and sells the rare earth concentrates and refined products from previously mined above-ground stocks. Neodymium, praseodymium, and lanthanum oxides are produced for further processing but these materials are not turned into rare earth metal in the United States.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • The Symbols of the Chemical Elements
    42 THE SYMBOLS OF THE CHEMICAL ELEMENTS DARRYL FRANCIS Sutton, Surrey, England [email protected] The names of the chemical elements have received a certain amount of attention in Word Wa s over the years. The very first issue of Word Ways in February 1968 presented a quiz on 20 transposed element names. Later articles have offered more extensive transpositions, trnsadditions, old names for some of the elements, elements in US placenames, and words composed solely of the element symbols, such as CoAgULaTe. In this article, I want to examine the symbols of the chemical elements as an ordered coUection of letters. Many earlier items in Word Ways have treated the typewriter (computer) keyboard as an ordered sequence of letters (QWERTYillOPASDFGHJKLZXCVBNM) and have posed ques­ tions such as: • What is the longest word with its letters spelled in keyboard order? • What is the longest word with its letter spelled in rever e keyboard order? • What is the longest word with letters from the first letter row? Similar questions can be raised with regard to the elemental symbols. First off let's take a look at the periodic table, the listing of chemical elements in atomic number order and the corre ponding symbols. The list below contains 109 elements, with atomic numbers from 1 to 109. For three f the elements (aluminum, sulfur, cesium) there exist variant Briti h pellings (aluminium ulphur, caesium). For elements 104 to 109 I have used the new provisional name rather than the earlier suggested names. My 1998 printing of the Merriam-Webster ollegiate Di tionary lOth editi n.
    [Show full text]
  • Saturable Absorber Mirrors for Passive Mode-Locking
    Saturable Absorber Mirrors For Passive Mode-locking R. Hohmuth1 3, G. Paunescu2, J. Hein2, C. H. Lange3, W. Richter1 3, 1 Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena, Germany, tel: +493641947444, fax: +493641947442, [email protected] 2 Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena, Germany 3 BATOP GmbH, Th.-Koerner-Str. 4, 99425 Weimar, Germany Introduction Saturable Absorber Mirror (SAM) Saturable absorber mirrors (SAMs) are inexpensive and schematic laser set-up compact devices for passive mode-locking of diode pumped solid state lasers. Such laser systems can provide ultrashort cavity, length L -cavity with gain medium pulse trains with high repetition rates. Typical values for pulse pulse -high reflective mirror and TRT=2L/c ) t output mirror with partially ( duration ranging from 100 fs up to 10 ps. For instance a I y t transmission i s Nd:YAG laser can be mode-locked with pulse duration of 8 ps n e -saturable absorber as t n and mean output power of 6 W. I modulator On this poster we present results for a Yb: KYW laser passive =>pulse trains spaced by mode-locked by SAMs with three different modulation depths round-trip time TRT=2L/c time t between 0.6% and 2.0%. SAMs were prepared by solid- gain medium high reflective mirror (pumped e.g. output mirror source molecular beam epitaxy with a low-temperature (LT) with saturable absorber by laser diode) (SAM) grown InGaAs absorbing quantum well. LT InGaAs quantum well SAM design SAM reflection spectrum Ta O or SiO / dielectric cover Requirements for passive mode- 25 2 conduction 71.2 nm GaAs / barrier E 7 nm c1 71.2 nm GaAs / barrier locking band Ec LT InGaAs 74.7 nm GaAs The mode-locking regime is stable agaist the onset of quantum well InGaAs 88.4 nm AlAs multiple pulsing as long as the pulse duration is smaller energy : 25x Bragg mirror than t .
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications
    Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications Tom Kugler Fiber Systems Mgr. Laser Mechanisms, Inc. www.lasermech.com LME 2011 Topics • Laser Output Wavelengths • Laser Average Power • Laser Output Waveforms (Pulsing) • Laser Peak Power • Laser Beam Quality (Focusability) • Key Properties • Key Applications • Beam Delivery Styles 2 Tom Kugler- Laser Mechanisms Compared to standard light sources… • Laser Light is Collimated- the light rays are parallel to and diverge very slowly- they stay concentrated over long distances- that is a “laser beam” • Laser Light has high Power Density- parallel laser light has a power density in watts/cm2 that is over 1000 times that of ordinary incandescent light • Laser Light is Monochromatic- one color (wavelength) so optics are simplified and perform better • Laser light is highly Focusable- low divergence, small diameter beams, and monochromatic light mean the laser can be focused to a small focal point producing power densities at focus 1,000,000,000 times more than ordinary light. 3 Tom Kugler- Laser Mechanisms Laser Light • 100W of laser light focused to a diameter of 100um produces a power density of 1,270,000 Watts per square centimeter! 4 Tom Kugler- Laser Mechanisms Examples of Laser Types • Gas Lasers: Electrical Discharge in a Gas Mixture Excites Laser Action: – Carbon Dioxide (CO2) – Excimer (XeCl, KrF, ArF, XeF) • Light Pumped Solid State Lasers: Light from Lamps or Diodes Excites Ions in a Host Crystal or Glass: – Nd:YAG (Neodymium doped Yttrium Aluminum
    [Show full text]
  • THULIUM Element Symbol: Tm Atomic Number: 69
    THULIUM Element Symbol: Tm Atomic Number: 69 An initiative of IYC 2011 brought to you by the RACI IONA JOHNSON www.raci.org.au THULIUM Element symbol: Tm Atomic number: 69 The element Thulium (when purified from mineral ores) is a silver-grey lustrous metal. Thulium metal is soft, malleable and ductile, and is so soft that it can be cut with a knife. The density is 9.32 grams per cubic centimetre: which is a bit lighter than Lead, but heavier than Iron, Copper, Nickel, and Tin. The surface of the metal will readily tarnish in air and produce an oxide. Thulium will also burn readily in air. Thulium will react slowly with cold water, and quite quickly with hot water to form Thulium hydroxide and Hydrogen. Thulium was named in honour of Thule: an ancient Roman name for a mythical country in the far North, which was probably Scandinavia. The first compound containing Thulium was discovered and named by Swedish Chemist Per Teodor Cleve (1840 – 1905) in 1879. Cleve made his discovery while studying the black-coloured rock that had been discovered around the town of Ytterby, Sweden in 1787. After removing all the other components from the rock the most interesting portion was where the Thulium accumulated because the solution possessed a bluish green colour. The compound was Thulium oxide (also called Thulia). Solid Thulium oxide has a pale green colour. The complete analysis of that rock took more than 100 years, and in the process nine new elements were discovered including Thulium. Pure metallic Thulium was not produced until 1910 by Charles James (1880-1928) an American chemist.
    [Show full text]
  • High Power Ultrafast Yb:Fiber Laser a Thesis Presented by Xinlong Li To
    High Power Ultrafast Yb:fiber Laser A Thesis presented by Xinlong Li to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Instrumentation (Physics) Stony Brook University August 2015 Stony Brook University The Graduate School Xinlong Li We, the thesis committe for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis Thomas K.Allison - Thesis Advisor Assistant Professor, Department of Physics and Astronomy, Department of Chemistry Eden Figueroa - Committee Member Assistant Professor, Department of Physics and Astronomy Matthew Dawber - Committee Member Associate Professor, Department of Physics and Astronomy Meigan C. Aronson - Committee Member Professor, Department of Physics and Astronomy This thesis is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Thesis High Power Ultrafast Yb:fiber Laser by Xinlong Li Master of Science in Instrumentation (Physics) Stony Brook University 2015 High power ultrafast laser pulses have broad applications in many fields such as mi- cromachining, real time imaging of ultrafast process, and frequency-comb-based precision spectroscopy, enabling large numbers of breakthroughs in science and technology. They even open the door to the attosecond (10−18 s) world via high harmonic generation thus gaining the insight into a wide range of electron dynamics. In this thesis, I present a linearly amplified Yb:fiber laser with 55 W average output power and 150 fs pulse duration. This laser is used for cavity-enhanced high harmonic generation to produce high-repetition-rate (78 MHz) extreme ultraviolet (XUV) femtosecond pulses. iii Contents List of Figures v List of Tables viii Acknowledgement ix 1 Introduction 1 1.1 Mode-Locking .
    [Show full text]
  • Holmium Laser Versus Thulium Laser Enucleation of the Prostate
    TAU0010.1177/1756287218779784Therapeutic Advances in UrologyGM Pirola, G Saredi 779784research-article2018 Therapeutic Advances in Urology Original Research Ther Adv Urol Holmium laser versus thulium laser 1 –11 DOI:https://doi.org/10.1177/1756287218779784 10.1177/ enucleation of the prostate: a matched- 1756287218779784https://doi.org/10.1177/1756287218779784 © The Author(s), 2018. Reprints and permissions: pair analysis from two centers http://www.sagepub.co.uk/ journalsPermissions.nav Giacomo Maria Pirola , Giovanni Saredi, Ricardo Codas Duarte, Lorraine Bernard, Andrea Pacchetti, Lorenzo Berti, Eugenio Martorana, Giulio Carcano, Lionel Badet and Hakim Fassi-Fehri Abstract Background: The aim of our study was to compare perioperative and functional outcomes of two different prostatic laser enucleation techniques performed in two high-volume centers: 100 W holmium laser enucleation of the prostate (HoLEP) (Lyon, France) and 110 W thulium laser enucleation of the prostate (ThuLEP) (Varese, Italy). Materials and Methods: A nonrandomized, observational, retrospective and matched-pair analysis was performed on two homogeneous groups of 117 patients that underwent prostate laser enucleation in the HoLEP or ThuLEP centers between January 2015 and April 2017, following the classical ‘three lobes’ enucleation technique. The American Society of Anesthesiologists (ASA) score and prostate volume were the main parameters considered for matching the patients between the two groups. Patients on anticoagulant therapy, with documented detrusor hypoactivity or hyperactivity or with the finding of concurrent prostate cancer were excluded from the study. Follow up was assessed at 3, 6 and 12 months after surgery. Results: Median enucleation and morcellation time was 75.5 and 11.5 min, respectively, in the HoLEP group versus 70.5 and 12 min, respectively, in the ThuLEP group (p = 0.001 and 0.49, respectively).
    [Show full text]
  • Tutorial: Fiber-Coupled Laser Diode Basics
    Tutorial: fiber-coupled laser diode basics Fiber coupled laser diodes: this tutorial provides an overview of the technical properties of fiber- coupled laser diodes. The various laser diode families such as DFB laser diodes or multi-emitter high power laser diodes will be described in this tutorial. I. Introduction Laser diodes are everywhere today. They are the simplest element to convert electrical power into laser power. Laser diodes are based on several semiconductor assembled materials (GaAs, InP or other more complex structures like GaN). Singlemode laser diodes are low power laser diodes (typically <1W) whereas multimode laser diodes are much higher power devices (typically >10 W up to several kW). II. Optical fibers: Two types of active fibers are commonly used to couple the light coming in from a laser diode: • Single mode fibers have a core of typically a few µm (for example ~6 µm around a wavelength of 1 µm, and 9 µm around a wavelength of 1.5 µm) • Multimode fibers are larger diameter fibers that can handle a much higher level of optical power. Standard versions have typically 62, 100, 200, 400, 800, or even > 1000 µm core diameter. For example, the smaller the diameter, the easier it is to focus to a small spot the light coming from the fiber with a lens or a microscope objective. Figure 1: Principle of a single mode or multi-mode fiber. The fiber core is much larger when considering a multimode fiber. • Polarization Maintaining fibers: Singlemode laser diode can be either standard (SMF) or Polarization maintaining (PM). In the latter, the optical fiber has a special clad structure which allows the maintenance of the polarization of light all along the fiber length.
    [Show full text]
  • All-Fiber Passively Mode-Locked Thulium/Holmium Laser with Two Center Wavelengths
    All-fiber passively mode-locked thulium/holmium laser with two center wavelengths Rajesh Kadel and Brian R. Washburn* 116 Cardwell Hall, Kansas State University, Department of Physics, Manhattan, Kansas 66506, USA *Corresponding author: [email protected] Received 18 June 2012; revised 17 August 2012; accepted 17 August 2012; posted 20 August 2012 (Doc. ID 170797); published 11 September 2012 We have demonstrated a self-starting, passively mode-locked Tm/Ho codoped fiber laser that lases at one of two center wavelengths. An amplified 1.56 μm distributed feedback laser pumps a ring laser cavity which contains 1 m of Tm/Ho codoped silica fiber. Mode locking is obtained via nonlinear polarization rotation using a c-band polarization sensitive isolator with two polarization controllers. The laser is able to pulse separately at either 1.97 or 2.04 μm by altering the intracavity polarization during the initiation of mode locking. The codoped fiber permits pulsing at one of two wavelengths, where the shorter is due to the Tm3 emission and the longer due to the Ho3 emission. The laser produces a stable pulse train at 28.4 MHz with 25 mW average power, and a pulse duration of 966 fs with 9 nm bandwidth. © 2012 Optical Society of America OCIS codes: 060.2320, 140.3070, 190.4370. 1. Introduction power pulses. The frequency combs from these lasers Continuous and pulsed laser sources in the mid- can be extended to wavelengths outside their gain infrared region (3–10 μm) have long been sought after bandwidth using fiber nonlinearities. for many important applications such as medical di- Unfortunately there are few lasers that can produce agnostics [1], molecular identification [2], or gas mon- mid-IR frequency combs directly.
    [Show full text]