High-Power Solid-State Lasers from a Laser Glass Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MECA SENS 2017 Programme& Abstracts
9th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation Hosted by the South African Nuclear Energy Corporation (Necsa) SOC Limited in cooperation with the International Atomic Energy Agency (IAEA) & ABSTRACTS PROGRAMME MECA SENS 2017 Programme & Abstracts MECA SENS 2017 Local Organising Committee Contents Committees 2 Foreword 2 Local Organising Committee 3 Programme Advisory Committee 3 International Scientific Committee 4 Sponsors 5 Event Information 6 Location 6 Registration 9 Internet 9 Catering 9 Presentations 10 Poster session 10 Certificate of attendance 10 Community outreach 10 Programme 11 Spring School - Monday 18 Sept 11 Day 1 – Tuesday 19 Sept 12 Day 2 – Wednesday 20 Sept 13 Day 3 – Thursday 21 Sept 14 List of Abstracts 15 Alain Lodini Plenary Lecture 23 Keynote Presentations 24 Invited Presentations 26 Oral Presentations 42 Poster Presentations 91 School lectures 114 List of Attendees 122 Author Index 126 1 | MECA SENS 2017, Skukuza, South Africa Committees Foreword Dear colleagues On behalf of the Organising Committee, it is a great privilege to welcome and receive you at the Nombolo Mdhluli Conference Centre in the Skukuza Rest Camp, capital of the UNESCO Biosphere Kruger National Park for the proceedings of MECA SENS 2017. This conference continues the tradition of providing a vibrant interactive forum for scientists, students and engineers interested in the most recent developments and capabilities of diffraction based techniques, complemented by mechanical and image-based methods towards rendering information on the prevailing stress conditions and material performance. We thank all participants for submitting excellent contributions. This has enabled the assembly of an exciting scientific program for the next three days. -
Characterization of Laser Peening- Induced Effects on a Biomedical Ti6al4v Alloy by Thermoelectric Means
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Characterization of laser peening- induced effects on a biomedical Ti6Al4V alloy by thermoelectric means Hector Carreón Sandra Barriuso Juan Antonio Porro Jose Luis González-Carrasco José Luis Ocaña Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx Optical Engineering 53(12), 122502 (December 2014) Characterization of laser peening-induced effects on a biomedical Ti6Al4V alloy by thermoelectric means Hector Carreón,a,* Sandra Barriuso,b Juan Antonio Porro,c Jose Luis González-Carrasco,b,d and José Luis Ocañac aInstituto de Investigaciones Metalúrgicas, UMSNH-IIM, Edif. “U” C.U., 58000-888 Morelia, Mexico bCentro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain cUniversidad Politécnica de Madrid, Ctr. Láser UPM, 28040 Madrid, Spain dCentro Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain Abstract. Laser peening has recently emerged as a useful technique to overcome detrimental effects associ- ated with other well-known surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worthwhile to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance and fatigue strength of structural components. In this work, plates of Ti-6Al-4V alloy of 7 mm in thick- ness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4-ns pulse length) working at the fundamental 1064-nm wavelength at 2.8 J∕pulse and with water as a confining medium was used. -
Test Report for Delivery Lots of Optical Glass TIE-04
Technical Information 1 Advanced Optics Version May 2016 TIE-04 Test report for delivery lots of optical glass Introduction 1. Backtracking of material properties and With every delivery of fine annealed optical glass the customer production information of lots. 1 receives a test report in accordance with ISO 10474. The test report contains non-specific test results to confirm the compli- 2. Compilation of delivery lots ��������������������������������������������� 1 ance of the delivery with the order. That means that random 3. Marking of the delivery lot and batches ��������������������� 2 representative test samples were inspected during production to ensure the compliance with the order. The specific choice 4. Details in the test report of fine annealed of test samples and inspection procedures ensures the validity optical glass ����������������������������������������������������������������������������� 2 of results for all parts of the delivery lot even if they were not 5. Annealing schedule of coarse annealed individually tested. optical glass . 4 6. Additional test certificates . 6 7. Literature . 6 1. Backtracking of material properties and nd νd production information of lots Step 0.5* ± 0.0001 ± 0.1 % Step 1 ± 0.0002 ± 0.2 % A batch is numbered directly after melting and coarse anneal- Step 2 ± 0.0003 ± 0.3 % ing. The batch number is kept in all further processing steps Step 3 ± 0.0005 ± 0.5 % and therefore allows to backtrace all important material prop- erties and production information. * only for selected glass types Tab. 1: Tolerances for refractive index and Abbe number We recommend to preserve the batch numbers of glass pieces (according to ISO 12123) [1] used for following processing steps. -
Laser Peening Without Coating: Process, Effects and Applications
LASER PEENING WITHOUT COATING: PROCESS, EFFECTS AND APPLICATIONS Y. Sano 1, N. Mukai 1, M. Obata 1 1 Toshiba Corporation, 8 Shinsugita-cho Isogo-ku Yokohama 235-8523, Japan ABSTRACT This paper reviews the current status of research, development and application on laser peening without coating (LPwC). LPwC imparts compressive residual stress on material by irradiating laser pulses under aqueous environment without any surface preparation. LPwC can be operated without restriction on absorption by water, using water-penetrable green lasers. The effect penetrates 1mm or more, much deeper than that of conventional surface treatment such as shot peening. Accelerating stress corrosion cracking (SCC) tests showed that LPwC effectively prevented the initiation of SCC in sensitized austenitic stainless steels, nickel-based alloys and their weld metals. LPwC remarkably improved high-cycle fatigue properties of steels, aluminum alloys, titanium alloys. Retardation of crack propagation due to stress corrosion and fatigue was also confirmed. LPwC has been utilized to prevent SCC in Japanese nuclear power plants (NPPs) since 1999. KEY WORDS Laser peening, Residual stress, Stress corrosion cracking, Fatigue INTRODUCTION Recent advances in laser material processing have yielded a multitude of innovative processes and applications in various fields. Laser peening without coating (LPwC) is a typical example and blazed a trail in preventive maintenance for SCC in operating nuclear power plants (NPPs), taking full advantage of the inertia-less process over mechanical treatment (Sano, 2000a). LPwC was invented about a decade ago as a surface enhancement technology to introduce compressive residual stress on materials, while exploring new applications of copper vapor lasers (Konagai, 1995). -
2014 Year in Review
NEWSLINE 2014 YEAR IN REVIEW LAWRENCE LIVERMORE NATIONAL LABORATORY NOTE NEWSLINE: LOOKING BACK AT 2014 CONTENTS Top 10 science and technology stories of 2014 Top 10 science stories . 2 n 2014, Lawrence Livermore National Laboratory (LLNL) built on a 62-year tradition January . 4 of translating basic science into technologies that ensure national security, address February . 7 I pressing real world problems and expand the boundaries of fundamental science. TOP March . 10 April . 13 The top stories of the year are a reflection of the Laboratory’s ability to apply its core May . 16 national security competencies to a broad set of rapidly evolving national and global 10 June . 19 challenges, including: energy, climate change, biodefense and detection, forensic July . 23 science, high performance computing and materials science. August . 26 September . 29 The capabilities developed and applied to this research, such as high performance computing (HPC) and additive October . 32 manufacturing, also serve to enhance the nation’s economic vitality and global competitiveness. November . 36 December . 41 Because evaluating the long-term impact of recent scientific developments on a field of study or science Recognition and Awards . 44 in general is difficult at best, the following advances are not listed in order of scientific importance. These This issue of Newsline was produced by the Public represent only a sampling of the science and technology produced at Lawrence Livermore during the 2014 Affairs Office. It represents a sample of the science and technology, people and operations highlights of calendar year. the year. It is available on the LLNL website. On the cover: Top stories of the year. -
Saturable Absorber Mirrors for Passive Mode-Locking
Saturable Absorber Mirrors For Passive Mode-locking R. Hohmuth1 3, G. Paunescu2, J. Hein2, C. H. Lange3, W. Richter1 3, 1 Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena, Germany, tel: +493641947444, fax: +493641947442, [email protected] 2 Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena, Germany 3 BATOP GmbH, Th.-Koerner-Str. 4, 99425 Weimar, Germany Introduction Saturable Absorber Mirror (SAM) Saturable absorber mirrors (SAMs) are inexpensive and schematic laser set-up compact devices for passive mode-locking of diode pumped solid state lasers. Such laser systems can provide ultrashort cavity, length L -cavity with gain medium pulse trains with high repetition rates. Typical values for pulse pulse -high reflective mirror and TRT=2L/c ) t output mirror with partially ( duration ranging from 100 fs up to 10 ps. For instance a I y t transmission i s Nd:YAG laser can be mode-locked with pulse duration of 8 ps n e -saturable absorber as t n and mean output power of 6 W. I modulator On this poster we present results for a Yb: KYW laser passive =>pulse trains spaced by mode-locked by SAMs with three different modulation depths round-trip time TRT=2L/c time t between 0.6% and 2.0%. SAMs were prepared by solid- gain medium high reflective mirror (pumped e.g. output mirror source molecular beam epitaxy with a low-temperature (LT) with saturable absorber by laser diode) (SAM) grown InGaAs absorbing quantum well. LT InGaAs quantum well SAM design SAM reflection spectrum Ta O or SiO / dielectric cover Requirements for passive mode- 25 2 conduction 71.2 nm GaAs / barrier E 7 nm c1 71.2 nm GaAs / barrier locking band Ec LT InGaAs 74.7 nm GaAs The mode-locking regime is stable agaist the onset of quantum well InGaAs 88.4 nm AlAs multiple pulsing as long as the pulse duration is smaller energy : 25x Bragg mirror than t . -
Effective Simulation and Optimization of a Laser Peening Process BE ACCEPTED in PARTIAL FULFILLMENT of the REQUIREMENTS for the DEGREE of Doctor of Philosophy
Effective Simulation and Optimization of a Laser Peening Process A dissertation submitted in partial fulfillment of the requirements for the degree of the Doctor of Philosophy By GULSHAN SINGH B.S., Jai Narain Vyas University, Jodhpur, India, 2001 M.Tech., Indian Institute of Technology, Kanpur, India, 2003 2009 Wright State University Wright State University SCHOOL OF GRADUATE STUDIES August 10, 2009 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN- DER MY SUPERVISION BY GULSHAN SINGH ENTITLED Effective Simulation and Optimization of a Laser Peening Process BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy . Ramana V. Grandhi, Ph.D. Dissertation Director Ramana V. Grandhi, Ph.D. Director, Engineering Ph.D. Program Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Committee on Final Examination Ramana V. Grandhi, Ph.D. Nathan Klingbeil, Ph.D. Ravi Penmetsa, Ph.D. Allan H. Clauer, Ph.D. Robert Brockman, Ph.D. ii Abstract Singh, Gulshan, Ph.D. in Engineering Program, Wright State University, 2009. Effective Simulation and Optimization of a Laser Peening Process. Laser peening (LP) is a surface enhancement technique that has been applied to improve fatigue and corrosion properties of metals. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbomachinery, airframe structures, and medical appliances. In the past, researchers have investigated the effects of LP parameters experimentally and performed a limited number of simulations on simple geometries. However, monitoring the dynamic, intricate relationships of peened materials experimentally is time consuming, expensive, and challenging. -
Thursday, May 10, 2007
ROOM 318-320 ROOM 321-323 ROOM 324-326 ROOM 314 ROOM 315 ROOM 316 ROOM 317 ROOM 336 CLEO JOINT C LEO QELS 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. 8:00 a.m. – 9:45 a.m. CThA • Fundamentals of CThB • Novel JThA • Attosecond CThC • χ2/Cascaded χ2 CThD • Optical Polymers CThE • Spectral Control of QThA • Novel Dynamic QThB • Plasmonics I Femtosecond Laser/ Semiconductor Laser Dynamics Devices Warren N. Herman; Lab Solid-State Lasers Measurements in Metals Mikhail Noginov; Norfolk Material Interactions Cavities Presider to Be Announced Robert Fisher; R. A. Fisher for Physical Sciences, Hajime Nishioka; Inst. for Michael Woerner; Max- State Univ., USA, Presider Donald Harter; IMRA Richard Jones; Intel Corp., Associates, USA, Presider Univ. of Maryland, USA, Laser Science, Japan, Born-Inst., Germany, America Inc, USA, USA, Presider Presider Presider Presider Presider Tutorial Invited Invited Tutorial Invited CThA1 • 8:00 a.m. CThB1 • 8:00 a.m. JThA1 • 8:00 a.m. CThC1 • 8:00 a.m. CThD1 • 8:00 a.m. CThE1 • 8:00 a.m. QThA1 • 8:00 a.m. QThB1 • 8:00 a.m. Ultrafast Micro and Nanomachining, Nanoscale Semiconductor Plasmon La- Probing Proton Dynamics in Molecules Parametric Generation in AlGaAs/AlOx Biomimetic Optical Polymers, James Widely Tunable Yb:KYW Laser Locked Ultrafast Spectroscopy on Photonic Nano-Particle Ions and Atoms, Nabil Gerard Mourou; Ecole Polytechnique de sers, Farhan Rana1, Christina Manolatou1, on an Attosecond Time Scale, Sarah Waveguides: Performances and Perspec- Shirk1, Guy Beadie1, Richard S. -
Arxiv:1911.10820V2 [Physics.Optics] 18 Dec 2019
Hybrid integrated semiconductor lasers with silicon nitride feedback circuits Klaus-J. Boller1,3,*, Albert van Rees1, Youwen Fan1,2, Jesse Mak1, Rob E.M. Lammerink1, Cornelis A.A. Franken1, Peter J.M. van der Slot1, David A.I. Marpaung1, Carsten Fallnich3,1, J¨ornP. Epping2, Ruud M. Oldenbeuving2, Dimitri Geskus2, Ronald Dekker2, Ilka Visscher2, Robert Grootjans2, Chris G.H. Roeloffzen2, Marcel Hoekman2, Edwin J. Klein2, Arne Leinse2, and Ren´eG. Heideman2 1Laser Physics and Nonlinear Optics, Mesa+ Institute for Nanotechnology, Department for Science and Technology, Applied Nanophotonics, University of Twente, Enschede, The Netherlands 2LioniX International BV, Enschede, The Netherlands 3University of M¨unster,Institute of Applied Physics, Germany *Corresponding author: [email protected] December 19, 2019 Abstract Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compati- bility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around 1.55 µm wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid integrated diode laser. 1 Introduction The extreme coherence of light generated with lasers has been the key to great progress in science, for instance in testing natures fundamental symmetries [1, 2], properties of matter [3, 4], or for the detection of gravitational waves [5]. -
Laser Output Couplers
Nd:YAG LASER OPTICS LASER OUTPUT COUPLERS An output coupler is a partially reflecting dielectric mirror used in a SUBSTRATE laser cavity. It transmits a part of the circulating intracavity power for Material UV grade Fused Silica or BK7 glass generating a useful output from the laser. S1 Surface Flatness λ/10 typical at 633 nm A low transmission output coupler leads to a low laser threshold, but S1 Surface Quality 20 –10 scratch & dig (MIL-PRF-13830B) also possibly to poor laser efficiency if the losses due to output coupling S2 Surface Flatness λ/10 typical at 633 nm do not dominate over other parasitic losses in the laser cavity. The S2 Surface Quality 20 –10 scratch & dig (MIL-PRF-13830B) output coupler transmission is often chosen to maximize the achieved Diameter Tolerance +0.00 mm; -0.12 mm output power, although its optimum value may be lower or higher if Thickness Tolerance ±0.25 mm there are other design purposes (minimizing the intracavity intensities Parallelism 30 arcsec or suppressing Q-switching instabilities in a passively mode-locked Chamfer 0.3 mm at 45° typical laser). COATING Technology Electron beam multilayer dielectric Adhesion and Durability Per MIL-C-675A. Insoluble in lab solvents Clear Aperture Exceeds central 85% of diameter OPTICS LASER :YAG Damage Threshold: Nd BK7 >3 J/cm2, 8 nsec pulse, 1064 nm typical UV FS >6 J/cm2, 8 nsec pulse, 1064 nm typical Coated Surface Flatness λ/10 at 633 nm over clear aperture Angle of Incidence 0 – 8° (normal) Back side antireflection coated R < 0.2% LASER OUTPUT COUPLERS SIZE -
Abbe Number 1 Abbe Number
Abbe number 1 Abbe number In physics and optics, the Abbe number, also known as the V-number or constringence of a transparent material, is a measure of the material's dispersion (variation of refractive index with wavelength) in relation to the refractive index, with high values of V indicating low dispersion (low chromatic aberration). It is named after Ernst Abbe (1840–1905), the German physicist who defined it. The Abbe number,[2][3] V , of a D material is defined as where n , n and n are the refractive An Abbe diagram plots the Abbe number against refractive index for a range of different D F C glasses (red dots). Glasses are classified using the Schott Glass letter-number code to indices of the material at the reflect their composition and position on the diagram. wavelengths of the Fraunhofer D-, F- and C- spectral lines (589.3 nm, 486.1 nm and 656.3 nm respectively). Abbe numbers are used to classify glass and other optically transparent materials. For example, flint glass has V < 50 and crown glass has V > 50. Typical values of V range from around 20 for very dense flint glass, around 30 for polycarbonate plastics, and up to 65 for very light crown glass, and up to 85 for fluor-crown glass. Abbe numbers are only a useful measure of dispersion Influences of selected glass component additions on the Abbe [1] for visible light, and for other number of a specific base glass. wavelengths, or for higher precision work, the group velocity dispersion is used. -
A Mode Locked Uv-Fel
578 P. Parvin et al. / Proceedings of the 2004 FEL Conference, 578-581 A MODE LOCKED UV-FEL P. Parvin* (AUT, IR-Tehran; AEOI-RCLA, IR-Tehran), G. R. Davoud-Abadi (AUT, IR-Tehran), A. Basam (IHU, IR-Tehran), B. Jaleh (BASU, IR-Hamadan), Z. Zamanipour (AEOI-RCLA, IR- Tehran), B. Sajad (AU, IR-Tehran), F. Ebadpour (AUT, IR-Tehran) Abstract FEL mode-locking phenomena for shorter wavelengths in An appropriate resonator has been designed to generate far-infrared and infrared range of spectrum [13, 14]. femtosecond mode locked pulses in a UV FEL with the In free-electron laser operating at the FIR and IR modulator performance based on the gain switching. The spectral regions, using a radio-frequency accelerator for gain broadening due to electron energy spread affects on the electron beam, when the electron pulse length can be the gain parameters, small signal gain γ0 and saturation of the same order as the slippage length or even shorter, intensity Is, to determine the optimum output coupling as the laser emits short pulses of multimode broad-band well. radiation [14]. INTRODUCTION On the other hand, Storage ring FEL represents a very Today, there is an increasing interest in the generation competitive technical approach to produce photons with of intense, tunable, coherent light in short wavelength these characteristics. After the first lasing of a storage region. Laser pulses of very short duration in UV/VUV ring FEL (SRFEL) in visible [15], the operation spectrum, find applications in large number of areas, such wavelength has been pushed to shorter values in various as analysis of transit-response of atoms and molecules, laboratories.