The Electron Microscopy Science Technology Platform at the Francis

Total Page:16

File Type:pdf, Size:1020Kb

The Electron Microscopy Science Technology Platform at the Francis The Francis Crick Institute is a The Electron biomedical discovery institute Microscopy dedicated to understanding the fundamental biology underlying Science health and disease. Its work Technology is helping to understand why disease develops and to translate Platform at discoveries into new ways to the Francis prevent, diagnose and treat illnesses such as cancer, heart Crick Institute disease, stroke, infections, and Lucy Collinson neurodegenerative diseases. An independent organisation, its founding partners are the Medical Research Council (MRC), Cancer Research UK, Wellcome, University College London, Imperial College London and King’s College London. The Crick was formed in 2015, with many of the Crick’s scientists joining from two ‘parent’ institutes, the MRC’s National Institute for Medical Research and Cancer Research UK’s London Research Institute, and in 2016 it moved into a brand new state-of- the-art building in central London which brings together 1500 scientists and support staff working collaboratively across disciplines, making it the biggest biomedical research facility under a single roof in Europe. © Nick Guttridge 4 ISSUE 46 JUNE 2017 5 Each microscope room is a six-sided shielded box, • The Phenom-World DelPhi benchtop SEM with walls that contain complex metallic layers has an integrated fluorescence microscope to attenuate DC fields, and an active cancellation for correlative imaging system to attenuate AC fields. Under each • The FEI Twin 120 kV TEM has a cryo stage for microscope is a concrete platform, cast in place, and screening vitrified macromolecular samples supported by air springs that remove environmental prior to imaging on 200 kV and 300 kV TEMs vibration to <1 Hz. Each room has tight control of air • The FEI BioTwin 120 kV TEM has an quality, airflow, temperature stability and humidity, integrated iCorr fluorescence microscope for all of which are monitored through a complex correlative microscopy building management system with 27,000 individual • The FEI Quanta SEM has a Delmic SECOM monitoring points. In case of power outages, the integrated super-resolution fluorescence entire imaging suite is supported by a dedicated microscope for high accuracy correlative uninterruptible power supply, which was recently microscopy tested and proved invaluable during a power failure • The Zeiss Sigma and Merlin SEMs have Gatan at the local electricity sub-station. 3View stages for volume EM The time, effort, teamwork and expertise that went • The Zeiss Crossbeam 540 FIB SEM is used for into the project delivered an impressive suite of volume EM and also has a Leica cryo-stage for © Nick Guttridge rooms tailored to running sensitive high-resolution cryo-electron tomography sample preparation Building the Crick imaging experiments on a wide array of high-end • The Zeiss Versa 510 microCT has Atlas 5 • The total floor space is the size of 17.5 football fields instrumentation. software for 3D correlative imaging • There are over 1,500 rooms (twice as many as Buckingham Palace) Instrumentation Science and Technology • There are over 100 km of mains power cables installed (equivalent to the distance from The Structural Biology STP holds two FEI Titan Development London to Southampton) Krios transmission EMs (TEMs), for studying The EM STP collaborates with Crick researchers on • There are over 800 solar panels on the roof macromolecules and frozen hydrated cells. The EM ~80 projects at any one time. Some examples of our • The Crick was at one point the biggest single building construction project in the UK STP holds a range of microscopes that enable us to recent work are: study samples across scales, from single molecules • Studies of the role of RAD51 paralogs in facility. A sweet-spot for physical vibration, acoustic Facility design to whole model organisms. These include two repair of DNA damage, processes that are vibration and electro-magnetic fields was identified There are 14 Science Technology Platforms (STPs) benchtop scanning EMs (SEMs), two TEMs, three involved breast and ovarian cancer, with at the southwest corner of the site in the lower at the Crick, which concentrate expertise and SEMs, a Focused Ion Beam SEM and a microCT Simon Boulton’s lab using TEM (1, 2) basement, almost thirty metres underground. advanced equipment into teams that are accessible system. Each of these systems has additional • Studies of Mycobacterium tuberculosis infecting to all Crick researchers. Electron microscopes are A team of experts in electron microscopy, NMR, specialised functions: human lymphatic endothelial cells and housed in two of the STPs – Electron Microscopy advanced light microscopy, vibration control and (EM) and Structural Biology. The process of designing electromagnetic field control worked together with the Crick EM facilities began back in 2008, only a few the construction team, engineers and architects months after the land had been acquired and the over the next 8 years to deliver the project. This project officially announced. The challenge was to interaction was key to the success of the project, build a facility capable of holding high-end imaging and included frequent on-site visits to monitor the equipment, in a central London site surrounded complex build. by tube lines, roads, and the local, regional and The main construction phase finished in 2013 and international trains at St Pancras station. The a two-year period of fitting-out began. This phase site, an old railway storage yard to the west of St of the build included installation of measures to Pancras station and north of the British Library, was attenuate electromagnetic fields and vibrations. surveyed to identify the optimal position for the 6 ISSUE 46 JUNE 2017 7 macrophages with Max Gutierrez’s lab, using 3D correlative light and electron microscopy (CLEM) (3-5) • Studies of B cell responses in the human immune system, with Facundo Batista’s lab, using SEM and volume EM (6-8) The EM STP also develops new workflows. Some examples of our recent work are: • Development of sample preparation for Lucy's favourite image: Green fluorescent protein labelled lipids, localised to membranes in HeLa cells, imaged by integrated light and integrated light and electron microscopy (9- electron microscopy. 11) Favourite microscope: SEM, TEM, SBF SEM, • Development of a workflow for 3D CLEM FIB SEM, microCT – basically whichever one I’m using SBF SEM, used to study tuberculosis, HIV standing in front of at the time.... and cancer (5, 12) Favourite publication and why: The last • Development of cryo-correlative imaging one: ‘UltraLM and miniLM: Locator tools for smart of vitrified whole cells using synchrotron tracking of fluorescent cells in correlative light and radiation (13-16) electron microscopy’ {Brama, 2016 #832}, because it involves microscope hacking, and cuts across biology, microscopy, physics, optics, coding and Staff engineering. The EM STP team consists of nine postdoctoral If you weren’t a scientist, what would you scientists: seven are electron microscopists and be and why: If I could get paid for something I two have a background in physics, optics and image love but am not particularly good at, then a surfer! analysis. They are… What’s the best advice you’ve been Looking for an intelligent, automated Name: Lucy Collinson given: There’s no such thing as a stupid question Role: Head of EM STP and Microscopy Prototyping What three items would you take to a booking system for your Core Facility? desert island: Surfboard, insect repellant, luxury yacht Best-in-class online scheduling calendar with configurable rules to control who can book what, where and when. A fully-featured reporting system for Would you like to see how Name: Raffaella Carzaniga generating billing and auditing information. Calpendo can benefit you and (known as Raffa) An integrated, intelligent system that allows your Facility? Contact us now Role: Deputy Head of the EM STP for multifaceted activity bookings. for a free demonstration and Automated and targeted emails for activity notifications, confirmations and cancellations. 30 day trial. Qualifications: Degree and PhD in Microbiology, Brand new Inventory, Services and Workflow features for enhanced flexibility. post doc in Cell Biology Attending MMC 2017? Come and visit us at Stand 104 2006 Utilised in a multitude of Core Facilities across Joined the team: Europe, North America, Africa and Asia. Microscopy speciality: 3D correlative microscopy Tel: +44 (0)1235 813458 Email: [email protected] 8 ISSUE 46 JUNE 2017 Web: www.exprodo.com infocus Exprodo advert 2017.indd 1 22/02/2017 16:16:26 Qualifications: MBiochem (Hons), PhD in What three items would you take to a If you weren’t a scientist, what would Telescope, comfortable armchair, neuroscience, post-docs in neuroscience and in desert island: you be and why: A vet because it combines good whisky peripheral nerve injury models science with my love of animals Joined the team: 2011 What’s the best advice you’ve been given: The advice given to me during my PhD viva Microscopy speciality: CLEM, ILSEM, SBF SEM, Name: Anne Weston Senior Laboratory Research Scientist where one of the examiners suggested it would FIB SEM Role: be a good idea for me to get back into a career in Favourite microscope: Zeiss Crossbeam electron microscopy (!!!) 540 (new, shiny and extremely capable), and the What three items would you take to a venerable Jeol 1010 desert island: If we are talking purely material Raffa's favourite image: Negative staining of tobacco mosaic virus,
Recommended publications
  • Wellcome Trust Annual Report and Financial Statements 2017 Contents
    Annual Report and Financial Statements 2017 2 Wellcome Trust Annual Report and Financial Statements 2017 Contents Report from the Chair and the Director 5 Trustee’s Report 8 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 18 Financial Review 29 Structure and Governance 34 Risk Management 37 Remuneration Report 40 Audit Committee Report 43 Independent Auditor’s Report 45 Financial Statements 58 Consolidated Statement of Financial Activities 58 Consolidated Balance Sheet 59 Statement of Financial Activities of the Trust 60 Balance Sheet of the Trust 61 Consolidated Cash Flow Statement 62 Notes to the Financial Statements 63 Reference and Administrative Details 117 3 Wellcome Trust Annual Report and Financial Statements 2017 “ At Wellcome, we believe in the power of ideas to improve health” Jeremy Farrar Director 4 Wellcome Trust Annual Report and Financial Statements 2017 Report from the Chair and the Director “Our core approach is funding people to explore great ideas, at every step of the way from discovery to impact” At Wellcome, we believe in the power of ideas to improve cause of maternal mortality in the world. It also includes health. Funded from our independent investment portfolio, supporting research in the humanities and social sciences, we support thousands of scientists and researchers in more such as a project which this year published ethical guidelines than 70 countries, as well as innovators, educators and artists. for involving pregnant women in Zika vaccine research. Together, we take on big problems, fuel imaginations and spark And resources like the Human Induced Pluripotent Stem Cell debate, working always to achieve better health for everyone.
    [Show full text]
  • Structure of Human Aspartyl Aminopeptidase Complexed With
    Chaikuad et al. BMC Structural Biology 2012, 12:14 http://www.biomedcentral.com/1472-6807/12/14 RESEARCH ARTICLE Open Access Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family Apirat Chaikuad1, Ewa S Pilka1, Antonio De Riso2, Frank von Delft1, Kathryn L Kavanagh1, Catherine Vénien-Bryan2, Udo Oppermann1,3 and Wyatt W Yue1* Abstract Backround: Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β- hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference.
    [Show full text]
  • A Critical Base Pair in K-Turns That Confers Folding Characteristics and Correlates with Biological Function
    ARTICLE Received 16 Apr 2014 | Accepted 2 Sep 2014 | Published 29 Oct 2014 DOI: 10.1038/ncomms6127 OPEN A critical base pair in k-turns that confers folding characteristics and correlates with biological function Scott A. McPhee1, Lin Huang1 & David M.J. Lilley1 Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved AG pairs, that is, the 3b3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n ¼ Gor3b¼ C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2 þ - induced folding in solution. While SAM-I riboswitches have 3b3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value. 1 Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK. Correspondence and requests for materials should be addressed to D.M.J.L. (email: [email protected]). NATURE COMMUNICATIONS | 5:5127 | DOI: 10.1038/ncomms6127 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • Living Healthier for Longer Sharing Data Saves Lives
    News from the Medical Research Council network Spring 2014 Leading science for better health MEASUREto How some MRC scientific workshops are making custom-made kit to enable pioneering research Living healthier for longer Supporting innovative ageing research through the Lifelong Health and Wellbeing initiative Sharing data saves lives Opinions from two MRC researchers Network can also be downloaded as a PDF at: www.mrc.ac.uk/network CONTENTS NEWS News COMMENT FROM £39.1m for improving data research 3 £39.1m for improving Science festival fun 4 John Let’s talk about dementia 7 data research Savill A £32m MRC investment, announced by Universities and Science the MRC Consortium for Medical Microbial Bioinformatics led by Minister David Willetts at the High Performance Computing and Warwick University, the Medical Bioinformatics partnership led People CHIEF EXECUTIVE Big Data Conference in London on 6 February, plus an additional by Imperial College London and University College London £7.1m, is the latest instalment of a £90m funding initiative to Partners which includes the Francis Crick Institute, will also Dr Jane Cope on the power of persuasion 9 In February, the Minister for tackle health and bioinformatics challenges for the advancement support career opportunities for computational scientists, Universities and Science David of medical research. technologists and programme leaders, enhancing the UK’s skills Willetts announced a £32m MRC in this area. investment into improving the UK’s Six major strategic awards will strengthen collaborative links, capability in, and capacity for, improve tools and infrastructure for researchers and support the Mr Willets said: “Making the most of large and complex data is a Latest discoveries medical bioinformatics.
    [Show full text]
  • The Diamond Light Source
    The Diamond Light Source ... a bright future for UK and World science Richard P. Walker, Technical Director What is Diamond ? • The largest scientific investment in the UK for 30 years • A synchrotron light source producing pinpoint UV and X-ray light beams of exceptional brightness • A ‘super microscope’ for new research opportunities into the structure and properties of matter What is Diamond ? • A Power Converter ! 15 MW of electrical power from the grid … 300-500 kW of X-rays … … but most of which only produces unwanted heat; only a fraction is selected for use in experiments. What is Synchrotron Radiation ? SR is electromagnetic radiation emitted when a high energy beam of charged particles (electrons) is deflected by a magnetic field. What’s so special about Synchrotron Radiation ? SR SR is emitted over a wide range of the electromagnetic spectrum, from Infra-red to hard X-rays Any desired radiation wavelength can be produced - enabling a very wide range of scientific and technological applications What’s so special about Synchrotron Radiation ? SR is very intense, and has extremely high brightness (emitted from a small area, with small angular divergence, determined by the properties of the electron beam) High brightness means: - it can be focused to sub-micron spot sizes: possibility of examining extremely small samples or investigating the structure and properties of objects with very fine spatial resolution - experiments can be carried out much more quickly: high through-put of samples or ability to follow chemical and biological reactions in real-time Diamond is a “third-generation” synchrotron radiation source • 1st generation: machines originally built for other purposes e.g.
    [Show full text]
  • Structural Basis of Mammalian Mucin Processing by the Human Gut O
    ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso.
    [Show full text]
  • Structure and Ligand Binding of the ADP-Binding Domain of the NAD+ Riboswitch
    Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Structure and ligand binding of the ADP-binding domain of the NAD+ riboswitch Lin Huang1, Jia Wang and David M. J. Lilley* Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K. * To whom correspondence should be addressed 1. Current address : Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 , P. R. China and RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China Keywords : Riboregulation; RNA structure; X-ray crystallography; metal ions; nucleotide binding Running title: The structure of the NAD+ riboswitch Submitted to the RNA journal 20 January 2020 Editorial enquiries to Professor Lilley: Tel: (+44)-1382-384243 Email: [email protected] Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The nadA motif is the first known NAD+-dependent riboswitch, comprising two similar tandem bulged stem-loop structures. We have determined the structure of the 5’ domain 1 of the riboswitch. It has three coaxial helical segments, separated by an ACANCCCC bulge and by an internal loop, with a tertiary contact between them that includes two C:G base pairs. We have determined the structure with a number of ligands related to NADH, but in each case only the ADP moiety is observed. The adenosine adopts an anti conformation, and forms multiple hydrogen bonds across the width of the sugar edge of the penultimate C:G base pair of the helix preceding the bulge, and the observed contacts have been confirmed by mutagenesis and calorimetry.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • The UK's Role in Global Research
    The UK’s role in global research: How the UK can live up to its place in the world October 2020 Contents Principles and prerequisites 2 Introduction What does it mean to be a science superpower? Four principles for the UK to follow Essential prerequisites Chapter 1: The UK must be open 6 Make the UK a hub for global talent Maximise the benefits of outward mobility Create a ‘single front door’ for UK research Chapter 2: The UK must build networks across the world 10 Understand the importance of collaboration Secure the UK’s research relationship with Europe Forge new partnerships beyond Europe Chapter 3: The UK must use its resources strategically 14 Avoid duplication and inefficiency in infrastructure Ensure bilateral and multilateral funding is efficient Choose international partners strategically Chapter 4: The UK must use its influence for global good 18 Progress from ‘world-leading’ to global leadership Maximise diplomatic and informal influence Be a pioneer of regulatory diplomacy Next Steps 22 List of actions to be taken in 2020–21 Acknowledgments 24 Project participants (interviews and roundtables) Wellcome staff References 27 Principles and prerequisites Introduction The UK is rethinking its place in the modern world. The Government’s Global Britain agenda is beginning to take shape through its approach to trade, foreign policy, defence and security. Meanwhile, the Prime Minister’s ambition is for the UK to be a global science superpower, and research spending is now set to increase rapidly. The combination of these conversations and policy decisions will shape what kind of country the UK will be, and how it will position itself within the international research environment.
    [Show full text]
  • High Activity and Unique Substrate Specificity
    www.nature.com/scientificreports OPEN Structural characterisation of the catalytic domain of botulinum neurotoxin X - high activity and Received: 4 December 2017 Accepted: 28 February 2018 unique substrate specifcity Published: xx xx xxxx Geofrey Masuyer 1, Sicai Zhang2, Sulyman Barkho2, Yi Shen 2, Linda Henriksson1, Sara Košenina1, Min Dong2 & Pål Stenmark1 Botulinum neurotoxins (BoNTs) are among the most potent toxins known and are also used to treat an increasing number of medical disorders. There are seven well-established serotypes (BoNT/A-G), which all act as zinc-dependent endopeptidases targeting specifc members of the SNARE proteins required for synaptic vesicle exocytosis in neurons. A new toxin serotype, BoNT/X, was recently identifed. It cleaves not only the canonical targets, vesicle associated membrane proteins (VAMP) 1/2/3 at a unique site, but also has the unique ability to cleave VAMP4/5 and Ykt6. Here we report the 1.35 Å X-ray crystal structure of the light chain of BoNT/X (LC/X). LC/X shares the core fold common to all other BoNTs, demonstrating that LC/X is a bona fde member of BoNT-LCs. We found that access to the catalytic pocket of LC/X is more restricted, and the regions lining the catalytic pocket are not conserved compared to other BoNTs. Kinetic studies revealed that LC/X cleaves VAMP1 with a ten times higher efciency than BoNT/B and the tetanus neurotoxin. The structural information provides a molecular basis to understand the convergence/divergence between BoNT/X and other BoNTs, to develop efective LC inhibitors, and to engineer new scientifc tools and therapeutic toxins targeting distinct SNARE proteins in cells.
    [Show full text]
  • Selective Aster Inhibitors Distinguish Vesicular and Nonvesicular Sterol Transport Mechanisms
    Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms Xu Xiaoa,b,1, Youngjae Kimc,1, Beatriz Romartinez-Alonsod,1, Kristupas Sirvydisd, Daniel S. Orye, John W. R. Schwabed, Michael E. Jungc, and Peter Tontonoza,b,2 aDepartment of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095; cDepartment of Chemistry, University of California, Los Angeles, CA 90095; dInstitute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and eDepartment of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Contributed by Peter Tontonoz, December 2, 2020 (sent for review November 23, 2020; reviewed by Steven A. Kliewer and Hongyuan Yang) The Aster proteins (encoded by the Gramd1a-c genes) contain a shown to impair the movement of cholesterol from the PM to the ligand-binding fold structurally similar to a START domain and me- ER (10, 15), suggesting that it may also target as-yet undefined diate nonvesicular plasma membrane (PM) to endoplasmic reticulum sterol transport pathways. (ER) cholesterol transport. In an effort to develop small molecule Blood levels of high-density lipoprotein (HDL) cholesterol are modulators of Asters, we identified 20α-hydroxycholesterol (HC) inversely associated with heart disease. However, recent clinical and U18666A as lead compounds. Unfortunately, both 20α-HC and studies have shown that simply raising HDL cholesterol does not U18666A target other sterol homeostatic proteins, limiting their util- protect against cardiovascular disease (16). This suggests that the ity. 20α-HC inhibits sterol regulatory element-binding protein 2 flux of cholesterol to and from HDL may be more relevant to (SREBP2) processing, and U18666A is an inhibitor of the vesicular arterial lipid deposition than static blood levels.
    [Show full text]
  • Structure and Ligand Binding of the Glutamine-II Riboswitch
    Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz539 Structure and ligand binding of the glutamine-II riboswitch 1, 1, 2 2 1,* Lin Huang †,JiaWang †,AndrewM.Watkins , Rhiju Das and David M. J. Lilley 1 Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow June 2019 26 on by guest https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz539/5520577 from Downloaded Street, Dundee DD1 5EH, UK and 2Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Received March 25, 2019; Revised May 31, 2019; Editorial Decision June 03, 2019; Accepted June 06, 2019 ABSTRACT GS-inactivating protein factors IF7 and IF17, encoded by gifA and gifB, respectively (7,8). Ames and Breaker (9) iden- We have determined the structure of the glutamine-II tifed two 60 nt elements in the 5′-UTRs of genes involved riboswitch ligand binding domain using X-ray crys- in nitrogen∼ metabolism in cyanobacterial and metagenomic tallography. The structure was solved using a novel sequences. One is based on a three-way helical junction with combination of homology modeling and molecular a loop E motif, termed glnA, and the other with a pseu- replacement. The structure comprises three coaxial doknot termed the downstream peptide (DP) motif. Us- helical domains, the central one of which is a pseudo- ing in-line probing they demonstrated that the RNA binds knot with partial triplex character. The major groove L-glutamine with mM affnity, but discriminated against a of this helix provides the binding site for L-glutamine, series of similar compounds.
    [Show full text]