Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK

Total Page:16

File Type:pdf, Size:1020Kb

Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence. Not relying on public funding Wellcome is as well placed as possible to means Wellcome can take risks that would be face more difficult times. more difficult for governments or other charities. Existing priority areas have shown the additional impact possible when Wellcome acts at scale: our vaccines priority area co-founded Coalition “ Nothing can be achieved for Epidemic Preparedness Innovation (CEPI), in isolation from others.” which has now raised $780 million for developing vaccines and technologies to prevent infections such as Nipah virus and Rift Valley fever. This year, Wellcome spent £1.13 billion on This year, Wellcome-commissioned research charitable activities – this spend is much higher added to the evidence that vaccines could than last year because of the timing of significant also help to reduce drug-resistant infections, commitments but it is in line with our expectation another of our priority areas. that we will spend, on average, around £1 billion Two new priority areas were approved in 2019. a year. One will help make safe, effective and accessible Our spending level is made possible by our treatments a reality for snakebites, which currently investment portfolio, which returned 6.9% in the kill more than 120,000 people a year. The other year to 30 September 2019 or 4.9% after inflation. aims to ensure that Artificial Intelligence and data Our annualised returns over the past ten years technologies will transform research and healthcare have been 12.0%. In part, this period of strong in ways that benefit everyone. returns reflects a low starting point for asset The foundation of medical progress is science that prices after the Global Financial Crisis, and it has reveals new knowledge about human health and certainly been assisted by the actions of Central disease. Most of Wellcome’s funding goes into this Banks globally. Nonetheless, our investment vital and fundamental science, and it is difficult to team deserve credit for taking advantage of these pick out specific advances from the thousands of conditions to enable Wellcome to more than researchers we support. On pages 10 to 20, we double our funding capability. convey some of the range of this work. Not just the I would like to take this opportunity to clinician scientist, funded by Wellcome for 30 years, acknowledge our former Chief Investment who shared a Nobel prize in October 2019 for Officer, Danny Truell, who died in September. research on oxygen sensing, but also the early His management of the portfolio through career researcher setting up a lab to study how the crisis years and beyond was exceptional. wounds heal, a team of neuroscientists decoding His contributions have been pivotal to making cellular connections in the brain, and a collaboration Wellcome what it is today. at the Wellcome Sanger Institute using cutting edge genomics to personalise disease prediction for a type of chronic blood cancer. Report from Chair Wellcome Trust Annual Report 2019 | 3 There are so many more achievements we could Three Governors retired from the Board this year: celebrate. This is what makes Wellcome such Naguib Kheraj, also previously a stalwart external an exciting organisation: we see glimpses of how member of Wellcome’s Investment Committee, the world’s health could be transformed in a few Anne Johnson and Alan Brown, who all contributed years, a decade, or even a century from now. so much to Wellcome over the years. Amelia My admiration for the discipline and rigour of Fawcett, Richard Gillingwater and Cilla Snowball scientific thinking has only increased, and I have joined the Board in September 2019, and Elhadj seen great resilience to adversity among the As Sy will join in January 2020. The great wealth of scientific community. Wellcome is in an enviable commercial and non-profit expertise they bring will position of being able to fund our activities be invaluable as the Board continues to evolve ourselves, but we know how researchers after an effectiveness review in 2018, and as continually have to apply for grants and awards Wellcome develops more ambitious goals and from funders like us. It’s vital that Wellcome takes effective strategies to improve health for everyone. account of the effects that our approach to funding can have on the culture of research – not to over-state our influence, but so that we can aim for those effects to be positive. At the time of writing, researchers in the UK – Eliza Manningham-Buller and across the European Union – need all their Chair, Wellcome resilience during the uncertainty of Brexit. It is difficult to focus on science when you don’t know whether your international colleagues will be able to stay in your lab next year. Wellcome has been consistently clear that the UK must develop a simple, swift immigration system for researchers and technicians, keep access to EU research funding, and cooperate on regulation. This will allow cross-border scientific collaboration to continue to flourish, and help the UK maintain its reputation as a magnet for global scientific talent. Nothing can be achieved in isolation from others. I would like to thank everyone I have met and worked with at Wellcome, including Directors Mark Walport and Jeremy Farrar, and my fellow Governors who have guided, challenged and inspired me. Report from Chair Wellcome Trust Annual Report 2019 | 4 Report from Director In 1989, Peter Ratcliffe began setting up a lab at Research and innovation have most impact when Oxford University to investigate how cells sense science is a trusted part of society. Wellcome oxygen levels in the body. Wellcome awarded Global Monitor interviewed 140,000 people in him a senior fellowship award and we’ve funded 140 countries about how they think and feel him ever since. The research in his lab led to about science and major health challenges. It’s the fundamental discoveries about how the body largest ever study of its kind, and is not a resource responds to changes in oxygen levels, and about just for Wellcome – the full 2019 report and dataset related medical conditions including kidney failure. are available on our website, and I encourage all More recently, it has informed the development of scientists, policy makers and funders to make use potential new drugs for use in critical care and to of it to actively influence trust in science in your treat kidney disease, anaemia and several forms societies and communities. of cancer. Everyone at Wellcome was thrilled Such activities show the increase in Wellcome’s when it was announced that Peter would share scale and ambition over the past decade. This year, the 2019 Nobel Prize in Medicine for this work. we have been engaging with new sectors to recruit I was working in the Weatherall Institute of an outstanding chief executive for the Leap Fund, Molecular Medicine, Oxford, in the early 1990s for example. We’re now leading global responses and remember the scientists in Peter’s lab being to big health challenges, including drug-resistant so inspired – not just about their work but infections and mental health. also the culture of the lab. I am sure the positive The Wellcome Success Framework ties all our environment he created there contributed to all work together so we can assess how well we’re their success and should be celebrated along achieving our mission of improving health. As well with the resulting research. as being a tool to measure progress, it can be used to ensure we’re making the most of Wellcome’s “ We need science, innovation resources, expertise and relationships with people and society working together we fund, our partners and networks. This year, the Wellcome Success Framework to improve health for everyone” informed a significant review of how we fund science. As we have changed in recent years, Whether basic research into cellular oxygen- so too have the research enterprise and the sensing in Oxford, or demonstrating the health challenges we face. It’s time to take stock, effectiveness of a vaccine programme to prevent respond to those changes and set out exactly diarrhoeal disease in Malawi, it’s ideas and people what we hope to achieve through that funding.
Recommended publications
  • Wellcome Trust Annual Report and Financial Statements 2017 Contents
    Annual Report and Financial Statements 2017 2 Wellcome Trust Annual Report and Financial Statements 2017 Contents Report from the Chair and the Director 5 Trustee’s Report 8 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 18 Financial Review 29 Structure and Governance 34 Risk Management 37 Remuneration Report 40 Audit Committee Report 43 Independent Auditor’s Report 45 Financial Statements 58 Consolidated Statement of Financial Activities 58 Consolidated Balance Sheet 59 Statement of Financial Activities of the Trust 60 Balance Sheet of the Trust 61 Consolidated Cash Flow Statement 62 Notes to the Financial Statements 63 Reference and Administrative Details 117 3 Wellcome Trust Annual Report and Financial Statements 2017 “ At Wellcome, we believe in the power of ideas to improve health” Jeremy Farrar Director 4 Wellcome Trust Annual Report and Financial Statements 2017 Report from the Chair and the Director “Our core approach is funding people to explore great ideas, at every step of the way from discovery to impact” At Wellcome, we believe in the power of ideas to improve cause of maternal mortality in the world. It also includes health. Funded from our independent investment portfolio, supporting research in the humanities and social sciences, we support thousands of scientists and researchers in more such as a project which this year published ethical guidelines than 70 countries, as well as innovators, educators and artists. for involving pregnant women in Zika vaccine research. Together, we take on big problems, fuel imaginations and spark And resources like the Human Induced Pluripotent Stem Cell debate, working always to achieve better health for everyone.
    [Show full text]
  • The Electron Microscopy Science Technology Platform at the Francis
    The Francis Crick Institute is a The Electron biomedical discovery institute Microscopy dedicated to understanding the fundamental biology underlying Science health and disease. Its work Technology is helping to understand why disease develops and to translate Platform at discoveries into new ways to the Francis prevent, diagnose and treat illnesses such as cancer, heart Crick Institute disease, stroke, infections, and Lucy Collinson neurodegenerative diseases. An independent organisation, its founding partners are the Medical Research Council (MRC), Cancer Research UK, Wellcome, University College London, Imperial College London and King’s College London. The Crick was formed in 2015, with many of the Crick’s scientists joining from two ‘parent’ institutes, the MRC’s National Institute for Medical Research and Cancer Research UK’s London Research Institute, and in 2016 it moved into a brand new state-of- the-art building in central London which brings together 1500 scientists and support staff working collaboratively across disciplines, making it the biggest biomedical research facility under a single roof in Europe. © Nick Guttridge 4 ISSUE 46 JUNE 2017 5 Each microscope room is a six-sided shielded box, • The Phenom-World DelPhi benchtop SEM with walls that contain complex metallic layers has an integrated fluorescence microscope to attenuate DC fields, and an active cancellation for correlative imaging system to attenuate AC fields. Under each • The FEI Twin 120 kV TEM has a cryo stage for microscope is a concrete platform, cast in place, and screening vitrified macromolecular samples supported by air springs that remove environmental prior to imaging on 200 kV and 300 kV TEMs vibration to <1 Hz.
    [Show full text]
  • A DNA Database in the NHS: Your Freedom up for Sale?
    A DNA database in the NHS: Your freedom up for sale? May 2013 In April 2013, the Caldicott Committee, including Government Chief Scientist Sir Mark Walport, proposed new rules for data-sharing which would allow the Government to build a DNA database of the whole population of England in the NHS by stealth.1 The plan is to make NHS medical records and people’s genetic information available to commercial companies and to use public-private partnerships to build a system where all private information about every citizen is also accessible to the police, social workers, security services and Government. The Wellcome Trust, which was involved in the Human Genome Project and was led by Walport for ten years, has produced a plan which involves including a variant file, containing the whole genome of every person minus the reference genome, as an attachment to every medical record in the NHS in England.2 This data would be made available to ‘researchers’ (including commercial companies) for data-mining in the cloud and personalised risk assessments would be returned to individuals. The aim is to transform the NHS in line with proposals developed more than a decade ago by former GlaxoSmithKline Chairman Sir Richard Sykes. This is expected to massively expand the market for medicines, medical tests and other products, such as supplements and cholesterol-lowering margarines, by allowing products to be marketed to individuals based on personal risk assessments, created using statistical analysis of genetic data, medical records and other health information. The proposal to build a DNA database in the NHS was endorsed by the Human Genomics Strategy Group in 20123,4 and the Government (led by Prime Minister David Cameron) has quietly adopted this recommendation without telling members of the public.
    [Show full text]
  • A Short History of the Royal Aeronautical Society
    A SHORT HISTORY OF THE ROYAL AERONAUTICAL SOCIETY Royal Aeronautical Society Council Dinner at the Science Museum on 26 May 1932 with Guest of Honour Miss Amelia Earhart. Edited by Chris Male MRAeS Royal Aeronautical Society www.aerosociety.com Afterburner Society News RAeS 150th ANNIVERSARY www.aerosociety.com/150 The Royal Aeronautical Society: Part 1 – The early years The Beginning “At a meeting held at Argyll Lodge, Campden Hill, Right: The first Aeronautical on 12 January 1866, His Grace The Duke of Argyll Exhibition, Crystal Palace, 1868, showing the presiding; also present Mr James Glaisher, Dr Hugh Stringfellow Triplane model W. Diamond, Mr F.H. Wenham, Mr James Wm. Butler and other exhibits. No fewer and Mr F.W. Brearey. Mr Glaisher read the following than 77 exhibits were address: collected together, including ‘The first application of the Balloon as a means of engines, lighter- and heavier- than-air models, kites and ascending into the upper regions of the plans of projected machines. atmosphere has been almost within the recollection A special Juror’s Report on on ‘Aerial locomotion and the laws by which heavy of men now living but with the exception of some the exhibits was issued. bodies impelled through air are sustained’. of the early experimenters it has scarcely occupied Below: Frederick W Brearey, Wenham’s lecture is now one of the aeronautical Secretary of the the attention of scientific men, nor has the subject of Aeronautical Society of Great classics and was the beginning of the pattern of aeronautics been properly recognised as a distinct Britain, 1866-1896.
    [Show full text]
  • Structure of Human Aspartyl Aminopeptidase Complexed With
    Chaikuad et al. BMC Structural Biology 2012, 12:14 http://www.biomedcentral.com/1472-6807/12/14 RESEARCH ARTICLE Open Access Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family Apirat Chaikuad1, Ewa S Pilka1, Antonio De Riso2, Frank von Delft1, Kathryn L Kavanagh1, Catherine Vénien-Bryan2, Udo Oppermann1,3 and Wyatt W Yue1* Abstract Backround: Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β- hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference.
    [Show full text]
  • Rare Variant Contribution to Human Disease in 281,104 UK Biobank Exomes W ­ 1,19 1,19 2,19 2 2 Quanli Wang , Ryan S
    https://doi.org/10.1038/s41586-021-03855-y Accelerated Article Preview Rare variant contribution to human disease W in 281,104 UK Biobank exomes E VI Received: 3 November 2020 Quanli Wang, Ryan S. Dhindsa, Keren Carss, Andrew R. Harper, Abhishek N ag­­, I oa nn a Tachmazidou, Dimitrios Vitsios, Sri V. V. Deevi, Alex Mackay, EDaniel Muthas, Accepted: 28 July 2021 Michael Hühn, Sue Monkley, Henric O ls so n , S eb astian Wasilewski, Katherine R. Smith, Accelerated Article Preview Published Ruth March, Adam Platt, Carolina Haefliger & Slavé PetrovskiR online 10 August 2021 P Cite this article as: Wang, Q. et al. Rare variant This is a PDF fle of a peer-reviewed paper that has been accepted for publication. contribution to human disease in 281,104 UK Biobank exomes. Nature https:// Although unedited, the content has been subjectedE to preliminary formatting. Nature doi.org/10.1038/s41586-021-03855-y (2021). is providing this early version of the typeset paper as a service to our authors and Open access readers. The text and fgures will undergoL copyediting and a proof review before the paper is published in its fnal form. Please note that during the production process errors may be discovered which Ccould afect the content, and all legal disclaimers apply. TI R A D E T A R E L E C C A Nature | www.nature.com Article Rare variant contribution to human disease in 281,104 UK Biobank exomes W 1,19 1,19 2,19 2 2 https://doi.org/10.1038/s41586-021-03855-y Quanli Wang , Ryan S.
    [Show full text]
  • A Critical Base Pair in K-Turns That Confers Folding Characteristics and Correlates with Biological Function
    ARTICLE Received 16 Apr 2014 | Accepted 2 Sep 2014 | Published 29 Oct 2014 DOI: 10.1038/ncomms6127 OPEN A critical base pair in k-turns that confers folding characteristics and correlates with biological function Scott A. McPhee1, Lin Huang1 & David M.J. Lilley1 Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved AG pairs, that is, the 3b3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n ¼ Gor3b¼ C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2 þ - induced folding in solution. While SAM-I riboswitches have 3b3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value. 1 Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK. Correspondence and requests for materials should be addressed to D.M.J.L. (email: [email protected]). NATURE COMMUNICATIONS | 5:5127 | DOI: 10.1038/ncomms6127 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Volume 21 Supplement a December 2015 Next
    EMBnet.journal Volume 21 Supplement A December 2015 Next Generation Sequencing: a look into the future Final Conference & MC Meeting of COST Action BM1006 16-17 March 2015 Bratislava, Slovakia http://seqahead.eu/bratislava_2015 ESF provides COST is supported the Cost Office by the EU RTD through an EC Framework contract Programme EDITORIAL/CONTENT EMBnet.journal 21.A Editorial Contents The key task of COST Action BM1006, SeqAhead, Editorial ..............................................................2 Next Generation Sequencing (NGS) Data Analysis COST Action BM1006 (SeqAhead) closing Network, was, as its name suggests, networking; conference ........................................................3 but SeqAhead also emphasised the dissemina- Scientific Programme.........................................5 tion of knowledge. During the four years of the Keynote Lectures ................................................9 Action, SeqAhead surpassed every expectation: Oral Presentations ........................................... 13 with members participating from 29 European Posters.......................................................................25 countries, plus one international partner from South Africa, the Management Committee mem- bership reads like a “who’s-who” of European NGS research. This EMBnet.journal Conference Supplement clearly shows that during the four years of SeqAhead’s existence, the Action members ac- tively shared software and experiences, and col- laborated in numerous projects spanning diverse EMBnet.journal
    [Show full text]
  • Open Targets Genetics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Open Targets Genetics: An open approach to systematically prioritize causal variants 2 and genes at all published GWAS trait-associated loci 3 4 Edward Mountjoy1,2, Ellen M. Schmidt1,2, Miguel Carmona2,3, Gareth Peat2,3, Alfredo Miranda2,3, 5 Luca Fumis2,3, James Hayhurst2,3, Annalisa Buniello2,3, Jeremy Schwartzentruber1,2,3, Mohd 6 Anisul Karim1,2, Daniel Wright1,2, Andrew Hercules2,3, Eliseo Papa4, Eric Fauman5, Jeffrey C. 7 Barrett1,2, John A. Todd6, David Ochoa2,3, Ian Dunham1,2,3, Maya Ghoussaini1,2,*. 8 9 1. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 10 1SA, UK 11 2. Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK 12 3. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), 13 Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK 14 4. Systems Biology, Biogen, Cambridge, MA, 02142, United States 15 5. Integrative Biology, Internal Medicine Research Unit, Pfizer Worldwide Research, 16 Development and Medical, Cambridge, MA 02139, United States 17 6. Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford 18 Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, 19 UK 20 * Corresponding author 21 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 17, 2020.
    [Show full text]
  • Evidence Synthesis on the EU-UK Relationship on Research and Innovation January 2018
    Evidence synthesis on the EU-UK relationship on research and innovation January 2018 1. Introduction The Royal Society and the Wellcome Trust have undertaken a rapid evidence synthesis on the EU-UK research and innovation relationship as part of their Future Partnership Project. Organisations and individuals were invited to submit evidence and analyses for inclusion. Evidence was also gathered through internet searches to ensure an inclusive approach. The Annex is a summary of the methods. Two questions were used in gathering evidence and in determining the material in scope: 1. What incentives, infrastructure and mechanisms can be accessed by research and innovation organisations, funders and individuals in Member States to support collaborations? 2. How do Member States currently use and benefit from these and how might they be affected by Brexit? This paper is a synthesis of the evidence and covers funding, infrastructures, mobility, collaboration and regulation, with a focus on links between the EU and the UK. 2. Overview of the evidence base A few major reports were of particular relevance; the Royal Society’s three reports on the role of the EU in UK research and innovation and two reports commissioned from Technopolis Group by UK organisations, on the role of EU funding in UK research and innovation and the impact of collaboration: the value of UK medical research to EU science and health1,2. These documents were often referenced in other submissions. A report from the Lords Science and Technology Committee’s inquiry on EU Membership and UK Science also summarises many sources of evidence relevant to this synthesis.
    [Show full text]
  • Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI the Welding Institute BCS the Chartered Institute for IT
    SEE Society of Environmental Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI The Welding Institute BCS The Chartered Institute for IT BINDT British Institute of Non-Destructive Testing Professional Affiliates CIBSE Chartered Institution of Building ACostE Association of Cost Engineers Services Engineers APM Association for Project CIHT Chartered Institution of Highways Management and Transportation CABE Chartered Association of Building CIPHE Chartered Institute of Plumbing and Engineers Heating Engineering CQI Chartered Quality Institute CIWEM Chartered Institution of Water and IAEA Institute of Automotive Engineer Environmental Management Assessors EI Energy Institute IAT Institute of Asphalt Technology IAgrE Institution of Agricultural Engineers ICES Chartered Institution of Civil ICE Institution of Civil Engineers Engineering Surveyors IChemE Institution of Chemical Engineers ICorr Institute of Corrosion ICME Institute of Cast Metals Engineers ICT Institute of Concrete Technology IED Institution of Engineering IDE Institute of Demolition Engineers Designers IDGTE Institution of Diesel and Gas IET Institution of Engineering and Turbine Engineers Technology IExpE Institute of Explosives Engineers IFE Institution of Fire Engineers IMA Institute of Mathematics and its IGEM Institution of Gas Engineers and Applications Managers IMF Institute of Materials Finishing IHE Institute of Highway Engineers INCOSE UK International Council on Systems Engineering (UK Chapter) IHEEM Institute of Healthcare Engineering
    [Show full text]