Współpraca Konwencjonalnych Źródeł Węglowych I Wielkoskalowego Oze

Total Page:16

File Type:pdf, Size:1020Kb

Współpraca Konwencjonalnych Źródeł Węglowych I Wielkoskalowego Oze WSPÓŁPRACA KONWENCJONALNYCH ŹRÓDEŁ WĘGLOWYCH I WIELKOSKALOWEGO OZE RAPORT 2019 WSPÓŁPRACA KONWENCJONALNYCH ŹRÓDEŁ WĘGLOWYCH I WIELKOSKALOWEGO OZE RAPORT 2019 WSPÓŁPRACA KONWENCJONALNYCH ŹRÓDEŁ WĘGLOWYCH I WIELKOSKALOWEGO OZE RAPORT 2019 Spis treści WSTĘP ................................................................................................................................................................................................................. 4 1. UWARUNKOWANIA FUNKCJONALNE ENERGETYKI OPARTEJ NA PALIWACH KOPALNYCH, W SZCZEGÓLNOŚCI NA WĘGLU KAMIENNYM I BRUNATNYM ........................................................................................................................................................................... 7 1.1 CHARAKTERYSTYKA KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO................................................................................... 7 1.2 KRAJOWI WYTWÓRCY ENERGII ELEKTRYCZNEJ ................................................................................................................................. 9 1.3 TECHNOLOGIE WYTWARZANIA ENERGII ELEKTRYCZNEJ................................................................................................................. 11 1.4 INWESTYCJE W NOWE ŹRÓDŁA WĘGLOWE ...................................................................................................................................... 11 1.5 ROZWÓJ KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO ..................................................................................................... 12 1.6 PRZYSZŁOŚĆ ENERGETYKI WĘGLOWEJ W POLSCE ......................................................................................................................... 13 1.7 PERSPEKTYWY ROZWOJU SEKTORA WĘGLOWEGO W POLSCE. .................................................................................................... 14 1.8 WNIOSKI ............................................................................................................................................................................................... 17 Janusz Gajowiecki Remigiusz Nowakowski 2. UWARUNKOWANIA ROZWOJU ENERGETYKI WIATROWEJ W POSZCZEGÓLNYCH SEGMENTACH .......................................................19 2.1 ROZWÓJ ENERGETYKI WIATROWEJ NA ŚWIECIE............................................................................................................................... 19 Prezes zarządu Polskiego Stowarzyszenia Prezes zarządu Dolnośląskiego Instytutu 2.2 ROZWÓJ ENERGETYKI WIATROWEJ W POLSCE ................................................................................................................................. 19 Energetyki Wiatrowej Studiów Energetycznych 2.3 ROZWÓJ MORSKIEJ ENERGETYKI WIATROWEJ NA ŚWIECIE ............................................................................................................. 20 2.4 ROZWÓJ TECHNOLOGII W WYTWARZANIU TURBIN WIATROWYCH ............................................................................................. 21 Najbliższe dekady w krajowej energetyce będą upły- Struktura miksu energetycznego w Polsce będzie się 2.5 NAJWIĘKSZE PROJEKTY FARM WIATROWYCH NA ŚWIECIE, W EUROPIE I W POLSCE .................................................................. 21 wać pod znakiem wzrostu mocy zainstalowanej OZE. zmieniać, w wyniku czego nastąpi stopniowe odejście 2.6 OSIĄGNIĘCIA POLSKIEJ ENERGETYKI WIATROWEJ W WYTWARZANIU ENERGII ELEKTRYCZNEJ .....................................................23 Przybywać będzie zwłaszcza turbin wiatrowych. Do od węgla na rzecz innych, mniej emisyjnych źródeł wy- 2.7 MOC CAŁKOWITA A WSPÓŁCZYNNIK WYKORZYSTANIA MOCY ELEKTROWNI WIATROWYCH.................................................... 23 kręcących się już w Polsce wiatraków o mocy 5,9 GW twarzania energii. Dlatego mówiąc o transformacji ro- 2.8 PROGNOZA KOSZTÓW WYTWORZENIA ENERGII DLA ENERGETYKI WIATROWEJ ...........................................................................24 w tym roku dołączą kolejne farmy w efekcie aukcji dzimej energetyki, mówimy raczej o ewolucji niż rewo- 2.9 WPŁYW ENERGETYKI WIATROWEJ NA CENY ENERGII ELEKTRYCZNEJ I REDUKCJĘ EMISJI DWUTLENKU WĘGLA ..................... 27 przeprowadzonych w listopadzie 2018 r. W 2019 r. za- lucji. Ta ostatnia byłaby wręcz niemożliwa ze względów 2.10 STOCHASTYCZNY CHARAKTER WYTWARZANIA ENERGII ELEKTROWNI WIATROWYCH A BEZPIECZEŃSTWO SYSTEMU ........ 27 powiadana jest kolejna aukcja, a szanse na uzyskanie zarówno technicznych, jak i ekonomicznych. 2.11 PROGNOZOWANIE ENERGII Z WIATRU ............................................................................................................................................. 28 rządowego wsparcia dostanie część spośród gotowych 2.12 WSPÓŁPRACA OZE Z POLSKIM PRZEMYSŁEM .....................................................................................................................................30 do budowy projektów o łącznej mocy 3 GW. Za kilka Bez wątpienia Polska będzie podążać za trendami glo- 2.13 WNIOSKI .............................................................................................................................................................................................. lat do wiatraków na lądzie dołączą farmy na Bałtyku, balnymi, rozwijając bazę wytwórczą w oparciu o odna- 31 które dziś choć są w fazie projektów, budzą duże za- wialne źródła energii. Jednocześnie jednak powinna 3. ANALIZA KOMPLEMENTARNOŚCI ENERGETYKI WĘGLOWEJ I WIATROWEJ .......................................................................................... 33 interesowanie krajowych i zagranicznych inwestorów. w sposób najbardziej efektywny wykorzystać swoje za- 3.1 CHARAKTER MOCY I PARAMETRY KONTROLOWANE W KSE ............................................................................................................33 Niebawem z Bałtyku będziemy odbierać 6 GW, a doce- soby konwencjonalne. 3.2 SKŁADOWA STAŁA I ZMIENNA ZAPOTRZEBOWANIA DOBOWEGO NA ENERGIĘ ......................................................................... 33 lowo jest mowa nawet o 10 GW. 3.3 WSPÓŁPRACA ELEKTROWNI KONWENCJONALNYCH I ELEKTROWNI WIATROWYCH ................................................................. 35 Czeka nas perspektywa współdziałania rosnących 3.4 WSPÓŁPRACA RÓŻNYCH ŹRÓDEŁ GENERACJI W ZMIENNYCH UWARUNKOWANIACH POGODOWYCH .................................. Równolegle będziemy świadkami zastępowania naj- w siłę wielkoskalowych źródeł odnawialnych ze sta- 36 starszych źródeł węglowych nowoczesnymi blokami na nowiącymi podstawę systemu energetycznego blo- 3.5 WSPÓŁPRACA KSE Z SIECIAMI ENERGETYCZNYMI KRAJÓW OŚCIENNYCH .................................................................................. 37 czarne paliwo. Część pracujących dziś mocy konwen- kami na węgiel. Ich funkcja powinna stopniowo ewo- 3.6 TOPOGRAFIA KSE I OTOCZENIA. ....................................................................................................................................................... 38 cjonalnych przejdzie głęboką modernizację. luować, tak aby przystosowywać się do zmienności 3.7 MOŻLIWOŚCI REGULACYJNE W KSE .................................................................................................................................................. 39 produkcji OZE. Efektywnie działające bloki węglowe 3.8 ELASTYCZNOŚĆ BLOKÓW ENERGETYCZNYCH ..................................................................................................................................41 Bez względu na te fakty Polski nie ominą światowe w przyszłości powinny zmienić charakter na tzw. źró- 3.9 WNIOSKI ..................................................................................................................................................................................................45 trendy – stopniowa ewolucja w kierunku OZE na czele dła podszczytowe, tj. pracujące z ograniczoną mocą 4. ANALIZA ŁAŃCUCHA WARTOŚCI ENERGETYKI WIATROWEJ POD KĄTEM POTENCJAŁU POLSKIEGO PRZEMYSŁU .............................49 z wiatrem, produkujących coraz tańszą energię. i częściej zatrzymywane. Niektóre zadania regulacyj- ne z powodzeniem będą przejmować OZE. Jednak to 4.1 ANALIZA ŁAŃCUCHA WARTOŚCI ENERGETYKI WIATROWEJ ..............................................................................................................52 W polskich realiach moc bloków na węgiel nie będzie źródła konwencjonalne będą wciąż w najbliższej przy- 4.1.1 Projektowanie i planowanie ............................................................................................................................................................... 52 rosnąć. Z kolei moce odnawialne, przede wszystkim szłości gwarantem bezpieczeństwa i elastyczności Kra- 4.1.2 Produkcja turbiny ....................................................................................................................................................................................53 wiatrowe, wzrosną znacząco. Te dwa energetyczne jowego Systemu Energetycznego. Dlatego tak ważne 4.1.3 Produkcja infrastruktury przyłączeniowej i fundamentów ............................................................................................................. 53 światy są na siebie zdane jeszcze przez długie lata. jest, by planując modernizację tych bloków zapewnić 4.1.4 Prace instalacyjne ..............................................................................................................................................................................
Recommended publications
  • “Hybrid Lattice-Tubular Steel Wind Towers: Conceptual Design of Tower”
    “Hybrid Lattice-Tubular steel wind towers: Conceptual design of tower” Dissertação apresentada para a obtenção do grau de Mestre em Engenharia Civil na Especialidade de Mecânica Estrutural Autor João Rafael Branquinho Maximino Orientador Carlos Alberto da Silva Rebelo Milan Veljkovic Esta dissertação é da exclusiva responsabilidade do seu autor, não tendo sofrido correcções após a defesa em provas públicas. O Departamento de Engenharia Civil da FCTUC declina qualquer responsabilidade pelo uso da informação apresentada Coimbra, Julho, 2015 Hybrid Lattice-Tubular steel wind towers AGRADECIMENTOS Agradeço em primeiro lugar aos meus pais, por todo o apoio demonstrado ao longo dos anos, e pelos ensinamentos fundamentais que me levaram a este momento. Ao meu irmão, que sempre esteve ao meu lado, obrigado pela motivação em todos os momentos. A toda a minha família pela união, apoio, coragem e vontade que sempre me transmitiram. À minha namorada, que desde o início tornou esta experiência melhor para mim, e me ajudou a crescer como pessoa. Aos meus colegas que me acompanharam e apoiaram neste percurso, a todos os professores que me transmitiram tudo o que aprendi até agora, o meu muito obrigado. Por fim gostaria de agradecer à Universidade Técnica de Lulea por me ter acolhido na realização desta tese de mestrado, e mostrar a minha gratidão ao Professor Doutor Carlos Alberto da Silva Rebelo e ao Professor Doutor Milan Veljkovic pela orientação e disponibilidade dispensada. i Hybrid Lattice-Tubular steel wind towers ABSTRACT The utilization of the wind is not a new technology, but an evolution of old processes and techniques. Like nowadays, wind power had a huge role in the past, with different utilizations and proposes, although the main goal was always to help in the Human’s heavy work.
    [Show full text]
  • È Il Momento Dell'hi-Tech
    € 2,50 Giugno 2016 Quarta edizione INTERNATIONAL CINAITALIA È IL MOMENTO DELL’HI-TECH MF International, gli speciali di MF-Milano Finanza – Supplemento a Spedizione inart. A.P. 1 c. 1 L. 46/04, DCB Milano E-COMMERCE Chi vende di più online NUOVE FRONTIERE Le città strategiche per la crescita GRANDI LAVORI 30 progetti in cui inserirsi POWER 100 I cinesi e gli italiani che contano Cover Cina ok.indd 1 15/06/16 12:48 Giugno 2016 I CONTENUTI INTERNATIONAL CINAITALIA COVER STORY OUTLOOK Hi Tech L’invasione dei robot Power 100 Pil, yuan e Borsa, la Xi- 56 di Mariangela Pira I nomi dei personaggi cinesi e economy alla prova mercato 6 italiani che contano nel business 36 Valuta tendenzialmente debole sul E-commerce e nelle relazioni bilaterali per fare dollaro ed euro, qualche possibile È l’ora dell’m-shopping affari con il Paese di mezzo apertura sulle borse grazie ai fondi 58 di Franco Canevesio pensione: ecco come gli analisti guardano a Oriente Fashion TESTIMONIAL di Marcello Conti Sul web, purché sia social 62 di Milena Bello Xia Hua L’Europa? Investire DOSSIER/NUOVE FRONTIERE Ambiente 16 conviene di Tecno-green, italiani in prima fila Pier Paolo Albrici Inner Mongolia 64 di Marco Barbieri Latte, carne e cachemere, le Vito Xu 44 chance della Mongolia Food&beverage Mister Outlet va di Francesco Colamartino L’acqua? È uno status symbol al raddoppio di 17 di Franco Canevesio Pier Paolo Albrici 68 Federico Bazzoni Xia Hua Mobili Arredo Insider Banking Sulla scia del turbo-design 18 di Mariangela Pira 70 di Martina Mazzotti Gianfranco Lanci Sanità
    [Show full text]
  • Technical, Environmental and Social Requirements of the Future Wind Turbines and Lifetime Extension WP1, Task 1.1
    Ref. Ares(2020)3411163 - 30/06/2020 Deliverable 1.1: Technical, environmental and social requirements of the future wind turbines and lifetime extension WP1, Task 1.1 Date of document 30/06/2020 (M 6) Deliverable Version: D1.1, V1.0 Dissemination Level: PU1 Mireia Olave, Iker Urresti, Raquel Hidalgo, Haritz Zabala, Author(s): Mikel Neve (IKERLAN) Wai Chung Lam, Sofie De Regel, Veronique Van Hoof, Karolien Peeters, Katrien Boonen, Carolin Spirinckx (VITO) Mikko Järvinen, Henna Haka (MOVENTAS) Contributor(s): Aitor Zurutuza, Arkaitz Lopez (LAULAGUN) Marcos Suarez, Jone Irigoyen (Basque Energy Cluster) Helena Ronkainen (VTT) 1 PU = Public PP = Restricted to other programme participants (including the Commission Services) RE = Restricted to a group specified by the consortium (including the Commission Services) CO = Confidential, only for members of the consortium (including the Commission Services) This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 851245. 1 D1.1 – Technical, environmental and social requirements of the future wind turbines and lifetime extension This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 851245. 2 D1.1 – Technical, environmental and social requirements of the future wind turbines and lifetime extension Project Acronym INNTERESTING Innovative Future-Proof Testing Methods for Reliable Critical Project Title Components in Wind Turbines Project Coordinator Mireia Olave (IKERLAN) [email protected] Project Duration 01/01/2020 – 01/01/2022 (36 Months) Deliverable No. D1.1 Technical, environmental and social requirements of the future wind turbines and lifetime extension Diss.
    [Show full text]
  • THE ASIA-PACIFIC 02 | Renewable Energy in the Asia-Pacific CONTENTS
    Edition 4 | 2017 DLA Piper RENEWABLE ENERGY IN THE ASIA-PACIFIC 02 | Renewable energy in the Asia-Pacific CONTENTS Introduction ...................................................................................04 Australia ..........................................................................................08 People’s Republic of China ..........................................................17 Hong Kong SAR ............................................................................25 India ..................................................................................................31 Indonesia .........................................................................................39 Japan .................................................................................................47 Malaysia ...........................................................................................53 The Maldives ..................................................................................59 Mongolia ..........................................................................................65 Myanmar .........................................................................................72 New Zealand..................................................................................77 Pakistan ...........................................................................................84 Papua New Guinea .......................................................................90 The Philippines ...............................................................................96
    [Show full text]
  • Effects on Support Structure Design Due to Wake-Generated Turbulence
    Effects on support structure design due to wake-generated turbulence M.Sc. Thesis by Russell A. Guzmán Tejada 2014 Delft, The Netherlands. Effects on support structure design due to wake-generated turbulence by Russell A. Guzmán Tejada Ing. Mecatrónica por la UNAM, México. in partial fulfilment of the requirements for the degree of Master of Science in Sustainable Energy Technology at the Delft University of Technology, to be defended publicly on Tuesday October 24, 2014 at 9:30 AM. Supervisor: Dr. ir. M.B. Zaaijer, TU Delft Thesis committee: Prof. dr. G.J.W. van Bussel, TU Delft Dr. Eliz-Mari Lourens TU Delft This thesis is confidential and cannot be made public until October 23, 2014. An electronic version of this thesis is available at http://repository.tudelft.nl/. Abstract As the world demands cleaner, sustainable and economical energy sources, the wind energy academia and industry battles to increase performance and reduce costs. One of the promising fields of study is wind turbine wakes in wind farms. The position of the turbines within the layout affects the intensity of their wake effects, such as reduced wind speed or turbulence, therefore the choice of its position has an impact on wake losses and fatigue damage induced by wake-generated turbulence on the components. In this work, the possibility of wind turbine’s support structure cost reduction is explored by studying the effect on its design (and cost) caused by wake-generated turbulence. Furthermore, layout optimization considering wake losses and the wake-affected support structure cost was studied. To obtain insights about these effects, the turbulence intensity calculation and a simple support structure design were implemented into the wind farm design tool TeamPlay (by M.
    [Show full text]
  • Learning Curves for Renewables and Other Technologies
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at Learning curves for renewables and other technologies: The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. an international analysis http://www.ub.tuwien.ac.at/eng MASTER THESIS For obtaining the academic degree Diplom-Ingenieur (Dipl.-Ing.) Vienna University of Technology Institute of Energy System and Electrical Drives Energy Economics Group Supervisor : Univ.Prof. Dipl.Ing. Dr. Reinhard Haas Assistant: Dipl.-Ing. Dr. Gustav Resch By Kenan Sütcü Cortigasse 12/26 1220 Vienna Vienna, November 2018 1 Table of Contents 1 Introduction ................................................................................................................................... 5 1.1 Motive .................................................................................................................................... 5 1.2 Objective ................................................................................................................................ 6 1.3 Method ................................................................................................................................... 6 1.4 The Experience Curve Formula ............................................................................................... 7 1.5 Perils of the Experience Curve ...............................................................................................
    [Show full text]
  • The Zero Carbon Australia 2020 Stationary Energy Plan
    ENERGY A research collaboration PHOTO:TORRESOL ENERGY Australian Sustainable Energy Zero Carbon Australia Stationary Energy Plan > A ten year roadmap for 100% renewable energy > Baseload energy supplied by renewable sources > Affordable at $8 per household per week As a nation better endowed with renewable energy resources than most, and at the same time the OECD’s biggest per capita emitter of greenhouse gases, it behoves Australia to act promptly, and perhaps lead the world to a zero emissions economy based on renewable energy. This Report shows one way to do it, using presently available and commercially viable technology, and at an affordable cost comparable to our planned defence expenditure of 3% of GDP over the next ten years. Zero Carbon Australia is a timely and aspirational report that deserves the widest attention and debate, particularly by political and industrial decision makers. — gEnEral PETER GRATION, AC, OBE, FTSE FORMER AUSTRALIAN CHIEF OF DEFENCE As a company involved in the development of solar plants all over the world, at Torresol Energy we support the Zero Carbon Australia Plan that sets the path for a future with clean, renewable energy. Australia is one of the areas with better solar radiation and forms part of the international ‘sun belt’. Besides, the country has excellent conditions for profiting from that solar radiation: large low-populated areas to build the plants and an industry that can support the technological development in the solar generation sector. In that sense, each of Torresol Energy’s new projects introduces technologically advanced improvements to make Concentrated Solar Energy a manageable, economically competitive option and a real, viable, ecological and sustainable alternative to traditional energy sources.
    [Show full text]
  • Modelo Para a Formatação Dos Artigos a Serem Submetidos À Revista Gestão Industrial
    PERMANENT GREEN ENERGY PRODUCTION Relly Victoria V. Petrescu1, Aversa Raffaella2, Apicella Antonio2; Florian Ion T. Petrescu1 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, 060042 (CE) Romania [email protected]; [email protected] 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, Naples 81031 (CE) Italy [email protected]; [email protected] Abstract After 1950, began to appear nuclear fission plants. The fission energy was a necessary evil. In this mode it stretched the oil life, avoiding an energy crisis. Even so, the energy obtained from oil represents about 60% of all energy used. At this rate of use of oil, it will be consumed in about 60 years. Today, the production of energy obtained by nuclear fusion is not yet perfect prepared. But time passes quickly. We must rush to implement of the additional sources of energy already known, but and find new energy sources. Green energy in 2010-2015 managed a spectacular growth worldwide of about 5%. The most difficult obstacle met in worldwide was the inconstant green energy produced. Key-words: environmental protection, green energy, wind power, hydropower, pumped-storage. 1. Introduction Energy development is the effort to provide sufficient primary energy sources and secondary energy forms for supply, cost, impact on air pollution and water pollution, mitigation of climate change with renewable energy. Technologically advanced societies have become increasingly dependent on external energy sources for transportation, the production of many manufactured goods, and the delivery of energy services (Aversa et al., 2017 a-e, 2016 a-o; Petrescu et al., 2017, 2016 a-e).
    [Show full text]
  • Climate Arsonist Xi Jinping: a Carbon-Neutral China with a 6% Growth Rate? Richard Smith [System Change Not Climate Change, USA]
    real-world economics review, issue no. 94 subscribe for free Climate arsonist Xi Jinping: a carbon-neutral China with a 6% growth rate? Richard Smith [System Change Not Climate Change, USA] Copyright: Richard Smith, 2020 You may post comments on this paper at https://rwer.wordpress.com/comments-on-rwer-issue-no-94/ “Did Xi just save the world?”1 With California and Oregon on fire as Climate Week opened in New York on September 21st “climate arsonist” Donald Trump took to the virtual floor of the UN General Assembly and slammed China for its environmental record while ignoring his own efforts to save the coal industry and boost fossil fuel consumption – actions that earned him that sobriquet from Joe Biden. Barely an hour later, in a speech that could not have been more opposite to Trump’s, President Xi Jinping gave hope to despairing environmentalists with his stunning announcement to the UN that “Humankind can no longer afford to ignore the repeated warnings of Nature and go down the beaten path of extracting resources without investing in conservation, pursuing development at the expense of protection, and exploiting resources without restoration. The Paris Agreement on climate change charts the course for the world to transition to green and low-carbon development. It outlines the minimum steps to be taken to protect the Earth, our shared homeland, and all countries must take decisive steps to honor this Agreement. China will scale up its Intended Nationally Determined Contributions by adopting more vigorous policies and measures. We aim to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060.”2 Nevertheless, Xi’s pledge raised more questions than it answered.
    [Show full text]
  • 2021 Regional Trends Report
    2021 REGIONAL TRENDS REPORT Shaping a Sustainable Energy Future in Asia and the Pacific A GREENER, MORE RESILIENT AND INCLUSIVE ENERGY SYSTEM The shaded areas of the map indicate ESCAP members and associate members.* The Economic and Social Commission for Asia and the Pacific (ESCAP) serves as the United Nations’ regional hub, promoting cooperation among countries to achieve inclusive and sustainable development. The largest regional intergovernmental platform with 53 member States and 9 associate members, ESCAP has emerged as a strong regional think-tank offering countries sound analytical products that shed insight into the evolving economic, social and environmental dynamics of the region. The Commission’s strategic focus is to deliver on the 2030 Agenda for Sustainable Development, which it does by reinforcing and deepening regional cooperation and integration to advance connectivity, financial cooperation and market integration. The research and analysis undertaken by ESCAP, coupled with its policy advisory services, capacity building and technical assistance to governments aims to support countries’ sustainable and inclusive development ambitions. Information and statistics presented in this publication include only those member and associate member States located in the Asia-Pacific region. *The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or
    [Show full text]
  • Onomatological Analysis of the Technonyms in the Sphere of Energetics (Based on the Russian, English and Chinese Languages)
    MATEC Web of Conferences 141, 01051 (2017) DOI: 10.1051/matecconf/201714101051 Smart Grids 2017 Onomatological analysis of the technonyms in the sphere of energetics (based on the Russian, English and Chinese languages) Tatiana S. Plutalova1,*, Juri V. Kobenko2, and Elena S. Riabova3 1National Research Tomsk Polytechnic University, 634050 Tomsk, Russia 2National Research Tomsk State University, 634050 Tomsk, Russia 3Samara University, 443086 Samara, Russia Abstract. The article deals with the results of the onomatological analysis of the names of renewable energy facilities in the Russian, English and Chinese languages. The relevance of the study is determined by the trends in the development of these languages and their onomasiological foundation, which require focused attention of linguists in the context of an avalanche-type enlargement of terminological spheres. The results of the research can be useful for a wide range of specialists in humanities, including interpreters working with terminological thesauri in the sphere of renewable and resource energy. 1 Introduction The modern world is in the state of a continuous development: the emergence and spread of various technologies in the industrial sectors cause a continuous creation of new technological objects. In connection with the current ecological situation on the planet, renewable energy is becoming an increasingly important alternative to raw energy, replacing fossil energy sources with renewable ones. Thus, the number of new energy facilities is constantly growing all over the world, each of them is called in a certain way that is typical for the nominative traditions of a particular language. Interpreters in the field of professional communication have to adequately and equivalently interpret national technonyms in the context of intercultural transfer, which requires a high level of proficiency in terminological thesauri, especially in such a demanded branch of the economics as renewable energy.
    [Show full text]
  • Some Problems of the Offshore Wind Farms in Poland
    International Journal Volume 6 on Marine Navigation Number 4 and Safety of Sea Transportation December 2012 Some Problems of the Offshore Wind Farms in Poland A. Weintrit, T. Neumann & K. Formela Gdynia Maritime University, Gdynia, Poland ABSTRACT: This paper presents the problems of wind power in Europe and the world, including the concept of the first location of offshore wind farms off the coast of Poland. Taking into account regulatory restrictions and technical opportunities, we can identify, evaluate and select prospective offshore wind farm locations. Obvious concerns are the depth to the sea bottom, the distance from coastline, maritime traffic and geological and climatic conditions. 1 INTRODUCTION helping offshore wind to be more efficient and cost competitive in the near term. But this exciting After a huge wave of interest in the construction of technology is already being incorporated into wind farms on land increasing interest in the government’s energy planning around the world. construction of offshore wind farms, motivates many More than 90% of the world’s offshore wind European countries, including Poland, to changes in power is currently installed off northern Europe, in the law, allowing it to such investments at sea the North, Baltic and Irish Seas, and the English (offshore industry). Already in the nineties of the Channel. Most of the rest is in two ‘demonstration’ last century began to be interested in siting offshore projects off China’s east coast. wind farms. Denmark, the United Kingdom, the Scandinavian countries and the United States have Offshore wind is an essential component of developed a long-term project, which aimed to Europe’s binding target to source 20% of final analyze wind on the sea, finding a suitable location energy consumption from renewables, and China has for a farm, explore the depth of water, the formation set itself a target of 30 GW of installations off its of the seabed, the routes of shipping, etc.
    [Show full text]