Axillary Vein Thrombosis Mimicking Muscular Strain 233

Total Page:16

File Type:pdf, Size:1020Kb

Axillary Vein Thrombosis Mimicking Muscular Strain 233 Axillary vein thrombosis mimicking muscular strain 233 Discussion The overall incidence of imperforate hymen is unknown. In an American series of 254 vaginal J Accid Emerg Med: first published as 10.1136/emj.16.3.233 on 1 May 1999. Downloaded from malformations 17 of the patients had an imperforate hymen.' The authors of the paper estimated the incidence of vaginal agenesis to be one in 10 500 births and vaginal agenesis was 10 times more common than imperforate hymen in their series. Thus it can be seen that imperforate hymen is certainly uncommon. The incidence of associated acute retention of urine has been stated to be rare.2 Alterna- tively in a series of 26 cases of imperforate hymen reported by Calvin and Nichamin, 12 cases of the 26 (46%) presented with acute uri- nary retention.3 Urinary retention may occur when the retained menstrual products in the vagina compress the urethra and there is angu- lation of the urethra caused by pressure on the posterior wall of the bladder, again by retained A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~menstrual products. This condition is not usu- ally associated with other abnormalities.4 Figure 1 Ultrasonography showing dilated uterine cavity. Other causes of acute urinary retention in children include constipation, urinary infec- tion, postoperative causes, pelvic abscess, On catheterisation of the bladder, however, trauma, neurogenic bladder, urethral valves, the external genitalia were noted to be and tumours.5 markedly abnormal. There was no vaginal ori- This condition has not been described fice and the hymen was intact and bulging. before in the UK A&E literature. It is reported Secondary sexual characteristics were normal. here to emphasise the importance of assess- The patient reported that she had not yet ment of the cause of acute urinary retention in experienced a menstrual period. patients whose age and sex make the diagnosis After catheterisation 1000 ml of urine was unusual. drained. Subsequent pelvic ultrasonography revealed a massively dilated uterine cavity (fig 1 Evans TM, Polano ML, Boving RL. Vaginal malformations. 1), to the level of the umbilicus, with a dilated AmJ Obstet Gynecol 1981;141:910-20. 2 Lazarus J. Two cases of urinary retention from vaginal vagina extending to within 1 cm of the perineal occlusion. N YStateMed3' 1932;32:339-40. surface. 3 Calvin JK, Nichamin SJ. Haematocolpos due to imperforate hymen. Am 7 Dis Child 1936;51:832-46. At operation the hymen was incised and 4 Little KH, Crawford BD, Meister K. Haematocolpos: 1500 ml of old blood drained. The patient diagnosis made by ultrasound. J Clin Ultrasound 1978;11: 340-2. http://emj.bmj.com/ went on to make a full and uneventful 5 Peter JR, Steinhardt GF. Acute urinary retention in recovery. children. Pediatr Emerg Care 1993;9:205-7. Axillary vein thrombosis mimicking muscular strain on September 27, 2021 by guest. Protected copyright. J Louis Abstract climbing two weeks previously. While climbing Axillary vein thrombosis may occur on he had reached above his head for a handhold strenuous activity with a clinical picture and, on pulling himself up, experienced a sud- similar to a simple strain. It carries signifi- den sharp pain in his axilla. He had treated cant morbidity but a good outcome is pos- himself for a muscular strain with rest and Accident and sible with early treatment. The aetiology, non-steroidal anti-inflammatory drugs but his Emergency investigation, and treatment are discussed. symptoms had progressively worsened. Department, (J Accid Emerg Med 1999;16:233-234) The arm was diffusely swollen with a 2 cm x Southmead Hospital, 1 cm bruise in the axilla. The patient had Bristol Keywords: axillary vein thrombosis; upper limb injury; prominent superficial veins bilaterally but thrombolysis; vascular injury Correspondence to: those on the right failed to empty on elevation. Mr Jason Louis, Emergency There was no tenderness and shoulder move- Department, Frenchay Case report ments were normal. Hospital, Bristol BS 16 1LE. A 23 year old man presented with history of Axillary vein thrombosis was suspected and Accepted 11 February 1999 aching and tightness in his right arm since rock venography was performed showing complete 234 Louis curs in 5% to 14% of patients6 and is more common after primary thrombosis. Venous obstruction may cause persistent swelling and J Accid Emerg Med: first published as 10.1136/emj.16.3.233 on 1 May 1999. Downloaded from pain and, although these symptoms are less common than after lower limb deep venous thrombosis, 27% of patients remain sympto- matic six months after presentation despite treatment.7 Anticoagulation is the commonest form of treatment. This will not recanalise the vessel but is aimed at preventing propagation of the W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......... thrombus and embolisation. Although no data specific to upper limb thrombosis are available, it would theoretically be possible to start anticoagulation with a low molecular weight heparin on an outpatient basis. Surgery is usually reserved for the correction Figure 1 Venogram showing occlusion ofaxillary vein. of anatomical abnormalities if symptoms per- occlusion of the axillary vein (fig 1). The typi- sist after a period of anticoagulation.3 There cal "tramline" appearance of contrast flowing have been no large trials of either acute around a thrombus was not seen, so computed thrombectomy or later balloon venoplasty and tomography was performed to exclude an their roles remain controversial. extrinsic lesion compressing the vein; this was Thrombolysis has been shown to produce normal. patency of the affected vessel in 88% of cases.6 Blood was taken for proteins S and C, Only 15% of patients treated this way experi- antithrombin III, and lupus anticoagulant con- ence persistent symptoms compared with 36% centrations, all of which were normal. Antico- of those receiving anticoagulation only and agulation was then started with intravenous 64% of those left untreated. The mean follow heparin and continued with warfarin. Three up period of these patients was 1.9 years.7 It months after discharge the patient has some has become the treatment of choice in patients residual\welling but good function. He will presenting within five days of thrombus forma- resume rock climbing when anticoagulation tion and is most likely to be successful if has been discontinued. administered by local infusion, through a long venous catheter. Unfortunately our patient Discussion presented too late for thrombolysis to have Axillary vein thrombosis is associated with been effective. various aetiological factors. It may occur as a primary event due to vigorous upper limb SUMMARY activity or extrinsic venous compression, but is Axillary vein thrombosis is an uncommon con- more commonly secondary to central venous dition that may be associated with a history of http://emj.bmj.com/ catheterisation or systemic illness causing a injury and so remain unrecognised. If diag- hypercoagulable state. Overhead positioning of nosed early prognosis can be improved by the arm, as in climbing, may cause stretching thrombolytic treatment, otherwise anticoagula- and intimal tears of the subclavian vein' or tion alone is the treatment of choice. Surgery venous compression in the costoclavicular should be considered for patients who have space,' both predisposing to thrombus forma- anatomical abnormalities and exhibit persist- tion. It accounts for approximately 4% of all ent symptoms. on September 27, 2021 by guest. Protected copyright. deep venous thrombosis and the incidence is increasing with greater use of central venous catheters.3 Conflict of interest: none. Patients present with swelling (74%), discol- Funding: none. oration (68%), or aching (26%) of the affected 1 Schulte KR, Warner JIP. Uncommon causes of shoulder limb.4 Other findings may include venous pain in the athlete. Orthop Clin North Am 1995;26:505-28. 2 Medler RG, McQueen DA. Effort thrombosis in a young distension and tenderness. Venography is the wrestler. J Bone joint SurgAm 1 993;75: 1071-3. investigation of choice and will reveal the posi- 3 Rochester JR, Beard JD. Acute management of subclavian vein thrombosis. BrJ Surg 1995;82:433-4. tion and extent of the thrombus. Doppler 4 Horattas MC, Wright DJ, Fenton AH, et al. Changing con- ultrasound examination may produce false cepts of deep venous thrombosis of the upper extremity- report of a series and review of the literature. Surgery 1988; negative results if large collateral vessels are 104:561-7. present,5 however it is non-invasive and a posi- 5 Whelan TR. Management of vascular disease of the upper extremity. Surg Clin North Am 1982;62:373-89. tive result obviates the need for venography. 6 Hicken GJ, Ameli FM. Management of subclavian-axillary Morbidity after axillary vein thrombosis is vein thrombosis: a review. Can J Surg 1998;41:13-25. 7 Becker DM, Philbrick JT, Walker FB. Axillary and due to pulmonary embolism and chronic subclavian venous thrombosis. Prognosis and treatment. venous obstruction. Pulmonary embolism oc- Arch Intern Med 1991;151:1934-43..
Recommended publications
  • Prep for Practical II
    Images for Practical II BSC 2086L "Endocrine" A A B C A. Hypothalamus B. Pineal Gland (Body) C. Pituitary Gland "Endocrine" 1.Thyroid 2.Adrenal Gland 3.Pancreas "The Pancreas" "The Adrenal Glands" "The Ovary" "The Testes" Erythrocyte Neutrophil Eosinophil Basophil Lymphocyte Monocyte Platelet Figure 29-3 Photomicrograph of a human blood smear stained with Wright’s stain (765). Eosinophil Lymphocyte Monocyte Platelets Neutrophils Erythrocytes "Blood Typing" "Heart Coronal" 1.Right Atrium 3 4 2.Superior Vena Cava 5 2 3.Aortic Arch 6 4.Pulmonary Trunk 1 5.Left Atrium 12 9 6.Bicuspid Valve 10 7.Interventricular Septum 11 8.Apex of The Heart 9. Chordae tendineae 10.Papillary Muscle 7 11.Tricuspid Valve 12. Fossa Ovalis "Heart Coronal Section" Coronal Section of the Heart to show valves 1. Bicuspid 2. Pulmonary Semilunar 3. Tricuspid 4. Aortic Semilunar 5. Left Ventricle 6. Right Ventricle "Heart Coronal" 1.Pulmonary trunk 2.Right Atrium 3.Tricuspid Valve 4.Pulmonary Semilunar Valve 5.Myocardium 6.Interventricular Septum 7.Trabeculae Carneae 8.Papillary Muscle 9.Chordae Tendineae 10.Bicuspid Valve "Heart Anterior" 1. Brachiocephalic Artery 2. Left Common Carotid Artery 3. Ligamentum Arteriosum 4. Left Coronary Artery 5. Circumflex Artery 6. Great Cardiac Vein 7. Myocardium 8. Apex of The Heart 9. Pericardium (Visceral) 10. Right Coronary Artery 11. Auricle of Right Atrium 12. Pulmonary Trunk 13. Superior Vena Cava 14. Aortic Arch 15. Brachiocephalic vein "Heart Posterolateral" 1. Left Brachiocephalic vein 2. Right Brachiocephalic vein 3. Brachiocephalic Artery 4. Left Common Carotid Artery 5. Left Subclavian Artery 6. Aortic Arch 7.
    [Show full text]
  • Lab Exercises: Cardiovascular System Question # 1: Heart & Great Vessels I
    Lab Exercises: Cardiovascular System Question # 1: Heart & Great Vessels I Right brachiocephalic vein Brachiocephalic artery Superior vena cava Pulmonary trunk Aorta Right ventricle Left ventricle Right atrium A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 2: Heart & Great Vessels II Left common carotid artery Brachiocephalic trunk Left subclavian artery Left brachiocephalic vein Left pulmonary artery Inferior vena cava Right pulmonary artery Right pulmonary vein A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 3: Heart & Great Vessels (Post) Left pulmonary artery Left subclavian artery Right brachiocephalic vein Left common carotid artery Right pulmonary artery Right pulmonary vein Left pulmonary vein Inferior vena cava A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 4: Arteries of Head & Neck Occipital artery Superficial temporal artery External carotid artery Internal carotid artery Facial artery Vertebral artery Common carotid artery A. E. B. F. C. G. D. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 5: Arteries of Trunk I Axillary artery Brachiocephailic trunk Right common carotid artery Left common carotid artery Left subclavian artery Axillary artery Arch of aorta Thoracic aorta A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 6: Arteries of Trunk II Femoral artery Left common iliac artery Superior mesenteric artery Celiac trunk Inferior mesenteric artery Right renal artery Right testicular artery Left renal artery A.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • DVT Upper Extremity
    UT Southwestern Department of Radiology Ultrasound – Upper Extremity Deep Venous Thrombosis Evaluation PURPOSE: To evaluate the upper extremity superficial and deep venous system for patency. SCOPE: Applies to all ultrasound venous Doppler studies of the lower extremities in Imaging Services / Radiology EPIC ORDERABLE: • UTSW: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT • PHHS: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT INDICATIONS: • Symptoms such as upper extremity swelling, pain, fever, warmth, change in color, palpable cord • Suspected venous occlusion, or DVT based on clinical prediction rules (eg. Well’s score or D- Dimer) • Indwelling or recent PICC or central line • Chest pain and/or shortness of breath • Suspected or known pulmonary embolus • Follow-up known deep venous thrombosis (DVT) CONTRAINDICATIONS: No absolute contraindications EQUIPMENT: Preferably a linear array transducer that allows for appropriate resolution of anatomy (frequency range of 9 mHz or greater), capable of duplex imaging. Sector or curvilinear transducers may be required for appropriate penetration in patients with edema or large body habitus. PATIENT PREPARATION: • None EXAMINATION: GENERAL GUIDELINES: A complete examination includes evaluation of the superficial and deep venous system of the upper extremity including the internal jugular, innominate, subclavian, axillary, paired brachial, basilic, and cephalic veins. EXAM INITIATION: • Introduce yourself to the patient • Verify patient identity using patient name and DOB • Explain test • Obtain patient history including symptoms. Enter and store data page US DVT Upper Extremity 05-31-2020.docx 1 | Page Revision date: 05-31-2020 UT Southwestern Department of Radiology • Place patient in supine position with arm extended TECHNICAL CONSIDERATIONS: • Review any prior imaging, making note of any previous thrombus burden.
    [Show full text]
  • Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
    Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1).
    [Show full text]
  • Redalyc.Anatomical Study of the Accessory Axillary Vein in Cadavers
    Jornal Vascular Brasileiro ISSN: 1677-5449 [email protected] Sociedade Brasileira de Angiologia e de Cirurgia Vascular Brasil Barbosa Felix, Valtuir; Bernardino dos Santos, José André; Jucá de Moraes Fernandes, Katharina; Rolemberg Gama Cabral, Dhayanna; Silva dos Santos, Carlos Adriano; de Sousa Rodrigues, Célio Fernando; Silva Brito Lima, Jacqueline; Casado Ramalho, Antônio José Anatomical study of the accessory axillary vein in cadavers: a contribution to the axillary surgical approach Jornal Vascular Brasileiro, vol. 15, núm. 4, octubre-diciembre, 2016, pp. 275-279 Sociedade Brasileira de Angiologia e de Cirurgia Vascular São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=245049803004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ORIGINAL ARTICLE Anatomical study of the accessory axillary vein in cadavers: a contribution to the axillary surgical approach Estudo anatômico da veia axilar acessória em cadáveres: uma contribuição à abordagem cirúrgica axilar Valtuir Barbosa Felix1,2, José André Bernardino dos Santos2, Katharina Jucá de Moraes Fernandes2, 2 3 3 Dhayanna Rolemberg Gama Cabral *, Carlos Adriano Silva dos Santos , Célio Fernando de Sousa Rodrigues , Jacqueline Silva Brito Lima4, Antônio José Casado Ramalho2 Abstract Background: The axillary vein is an important blood vessel that participates in drainage of the upper limb. Some individuals present a second axillary vein (accessory axillary vein), which is an important collateral drainage path. Objectives: The goal of this study was to determine the incidence of the accessory axillary vein and to describe this vessel’s topography.
    [Show full text]
  • The Cardiovascular System
    11 The Cardiovascular System WHAT The cardiovascular system delivers oxygen and HOW nutrients to the body tissues The heart pumps and carries away wastes blood throughout the body such as carbon dioxide in blood vessels. Blood flow via blood. requires both the pumping action of the heart and changes in blood pressure. WHY If the cardiovascular system cannot perform its functions, wastes build up in tissues. INSTRUCTORS Body organs fail to function properly, New Building Vocabulary and then, once oxygen becomes Coaching Activities for this depleted, they will die. chapter are assignable in hen most people hear the term cardio- only with the interstitial fluid in their immediate Wvascular system, they immediately think vicinity. Thus, some means of changing and of the heart. We have all felt our own “refreshing” these fluids is necessary to renew the heart “pound” from time to time when we are ner- nutrients and prevent pollution caused by vous. The crucial importance of the heart has been the buildup of wastes. Like a bustling factory, the recognized for ages. However, the cardiovascular body must have a transportation system to carry system is much more than just the heart, and its various “cargoes” back and forth. Instead of from a scientific and medical standpoint, it is roads, railway tracks, and subways, the body’s important to understand why this system is so vital delivery routes are its hollow blood vessels. to life. Most simply stated, the major function of the Night and day, minute after minute, our tril- cardiovascular system is transportation. Using lions of cells take up nutrients and excrete wastes.
    [Show full text]
  • The Surgical Anatomy of the Mammary Gland. Vascularisation, Innervation, Lymphatic Drainage, the Structure of the Axillary Fossa (Part 2.)
    NOWOTWORY Journal of Oncology 2021, volume 71, number 1, 62–69 DOI: 10.5603/NJO.2021.0011 © Polskie Towarzystwo Onkologiczne ISSN 0029–540X Varia www.nowotwory.edu.pl The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (part 2.) Sławomir Cieśla1, Mateusz Wichtowski1, 2, Róża Poźniak-Balicka3, 4, Dawid Murawa1, 2 1Department of General and Oncological Surgery, K. Marcinkowski University Hospital, Zielona Gora, Poland 2Department of Surgery and Oncology, Collegium Medicum, University of Zielona Gora, Poland 3Department of Radiotherapy, K. Marcinkowski University Hospital, Zielona Gora, Poland 4Department of Urology and Oncological Urology, Collegium Medicum, University of Zielona Gora, Poland Dynamically developing oncoplasty, i.e. the application of plastic surgery methods in oncological breast surgeries, requires excellent knowledge of mammary gland anatomy. This article presents the details of arterial blood supply and venous blood outflow as well as breast innervation with a special focus on the nipple-areolar complex, and the lymphatic system with lymphatic outflow routes. Additionally, it provides an extensive description of the axillary fossa anatomy. Key words: anatomy of the mammary gland The large-scale introduction of oncoplasty to everyday on- axillary artery subclavian artery cological surgery practice of partial mammary gland resec- internal thoracic artery thoracic-acromial artery tions, partial or total breast reconstructions with the use of branches to the mammary gland the patient’s own tissue as well as an artificial material such as implants has significantly changed the paradigm of surgi- cal procedures. A thorough knowledge of mammary gland lateral thoracic artery superficial anatomy has taken on a new meaning.
    [Show full text]
  • Central Venous Access Techniques for Cardiac Implantable Electronic Devices
    Review Devices Central Venous Access Techniques for Cardiac Implantable Electronic Devices Sergey Barsamyan and Kim Rajappan Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK DOI: https://doi.org/10.17925/EJAE.2018.4.2.66 he implantation of cardiac implantable electronic devices remains one of the core skills for a cardiologist. This article aims to provide beginners with a practical ‘how to’ guide to the first half of the implantation procedure – central venous access. Comparative descriptions Tof cephalic cutdown technique, conventional subclavian, extrathoracic subclavian and axillary venous punctures are provided, with tips for technique selection and troubleshooting. Keywords Implantation of cardiac implantable electronic devices (CIEDs) remains one of the core skills of Pacemaker, pacing, implantation, cardiac cardiologists; most cardiology trainees will require at least basic skills in permanent pacemaker implantable electronic devices, CIED, (PPM) implantation.1 The aim of this article is to provide a guide to the techniques of venous central venous access, techniques access – the first and important part of the implantation procedure. The bulk of the provided instruction is based on our pacing lab experience and references are provided, where necessary, Disclosures: Sergey Barsamyan and Kim Rajappan have nothing to declare in relation to this article. to describe techniques utilised in other centres. No article can be totally comprehensive and cover Review Process: Double-blind peer review. all the subtleties of a procedure. Like for any practical skill, it is possible to give only the core Compliance with Ethics: This study involves a concepts in writing, and nothing can replace hands-on training supervised by an experienced review of the literature and did not involve implanter in a pacing theatre.
    [Show full text]
  • Clinical Anatomy Flash Cards
    ! " #$$"" $ $%&'()'(*'+,)&*" front.card2.4.qxd 12/5/06 2:28 PM Page 1 Abdomen 2.4 Drainage of the Anterior Abdominal Wall 1 2 3 Transumbilical plane 4 5 6 Lymphatic Venous drainage drainage COA back.card2.4.qxd 12/4/06 3:16 PM Page 1 Drainage of the Anterior Abdominal Wall 1. axillary lymph nodes 2. axillary vein 3. thoracoepigastric vein 4. superficial inguinal lymph nodes 5. superficial epigastric vein 6. femoral vein Lymph superior to the transumbilical plane drains to the axil- lary lymph nodes, while lymph inferior to the plane drains to the superficial inguinal lymph nodes. When flow in the supe- rior or inferior vena cava is blocked, anastomoses between their tributaries, that is, the thoracoepi- gastric vein, may pro- vide collateral circula- tion, allowing the ob- struction to be bypassed. Thoracoepigastric vein COA © 2008 Lippincott Williams & Wilkins front.card2.36.qxd 12/5/06 1:20 PM Page 1 Abdomen 2.36 Portal System 1 3 4 2 6 5 7 Grant’s back.card2.36.qxd 12/4/06 3:28 PM Page 1 Portal System 1. inferior vena cava 2. hepatic portal vein 3. right gastric vein 4. splenic vein 5. superior mesenteric vein 6. inferior mesenteric vein 7. superior rectal veins Caput Medusae When scarring and fibrosis from cir- rhosis obstruct the portal vein, pres- sure in the portal vein rises and pro- duces portal hypertension. The blood then flows to into the systemic system at places of portal-systemic anastomo- sis, producing varicose veins. Caput medusae is caused by the veins of the anterior abdominal wall becoming dilated from portal hypertension.
    [Show full text]
  • Anatomy and Physiology of the Cardiovascular System
    Chapter © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 5 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Anatomy© Jonesand & Physiology Bartlett Learning, LLC of © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION the Cardiovascular System © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION OUTLINE Aortic arch: The second section of the aorta; it branches into Introduction the brachiocephalic trunk, left common carotid artery, and The Heart left subclavian artery. Structures of the Heart Aortic valve: Located at the base of the aorta, the aortic Conduction System© Jones & Bartlett Learning, LLCvalve has three cusps and opens© Jonesto allow blood & Bartlett to leave the Learning, LLC Functions of the HeartNOT FOR SALE OR DISTRIBUTIONleft ventricle during contraction.NOT FOR SALE OR DISTRIBUTION The Blood Vessels and Circulation Arteries: Elastic vessels able to carry blood away from the Blood Vessels heart under high pressure. Blood Pressure Arterioles: Subdivisions of arteries; they are thinner and have Blood Circulation muscles that are innervated by the sympathetic nervous Summary© Jones & Bartlett Learning, LLC system. © Jones & Bartlett Learning, LLC Atria: The upper chambers of the heart; they receive blood CriticalNOT Thinking FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Websites returning to the heart. Review Questions Atrioventricular node (AV node): A mass of specialized tissue located in the inferior interatrial septum beneath OBJECTIVES the endocardium; it provides the only normal conduction pathway between the atrial and ventricular syncytia.
    [Show full text]
  • Surgical Management of Brachioaxillary-Subclavian Vein Occlusion
    Eur J Vasc Endovasc Surg 11, 225-229 (1996) Surgical Management of Brachioaxillary-subclavian Vein Occlusion V. S. Sottiurai, R. Lyon, C. Ross, M. Cooper and 3. Gonzales Department of Surgery, Section of Vascular Surgery, Louisiana State University School of Medicine, 1542 Tulane Avenue, Louisiana 70112-2822, U.S.A. Objective: The possibility of using Ring PTFE graft as venous bypass to preserve arteriovenous graft function and reduce upper extremity swelling. Methods: Twenty-two patients with stenosis/occlusion of the brachial-axillary-subclavian vein segment in haemodialysis patients (n = I9) and patients with penetration injury (n = 3) who were not candidates for balloon angioplasty were treated with ring PTFE venous bypass in renal patients and jugular to axillary vein transposition for trauma patients and followed for 10-87 months (mean 31) using venography, Doppler analysis and Duplex scanning. Results: There was no death or neurologic deficit resulting from the venous bypass. Resolution of swelling occurred in 8-48 h. 19/22 (86%) of the bypasses and 3/3 transpositions remained patent after a mean follow-up of 31 months (10-87) months. The attrition was due to AV graft occlusion (n = 2) and infection requiring graft removal (n = 1). Conclusions: Ring PTFE graft is an acceptable venous bypass for brachial-axillary-subclavian stenosis/occlusion to reduce arm swelling and preserve the function of AV grafts in patients with lesions not amendable with balloon angioplasty or thrombolytic therapy. Jugular-axillary transposition is inappropriate for renal patients. Key Words: Brachioaxillary-subclavian vein occlusion; Venous hypertension; Arteriovenous graft; Chronic renal failure. Introduction Table 1.
    [Show full text]