Central Venous Access Techniques for Cardiac Implantable Electronic Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prep for Practical II
Images for Practical II BSC 2086L "Endocrine" A A B C A. Hypothalamus B. Pineal Gland (Body) C. Pituitary Gland "Endocrine" 1.Thyroid 2.Adrenal Gland 3.Pancreas "The Pancreas" "The Adrenal Glands" "The Ovary" "The Testes" Erythrocyte Neutrophil Eosinophil Basophil Lymphocyte Monocyte Platelet Figure 29-3 Photomicrograph of a human blood smear stained with Wright’s stain (765). Eosinophil Lymphocyte Monocyte Platelets Neutrophils Erythrocytes "Blood Typing" "Heart Coronal" 1.Right Atrium 3 4 2.Superior Vena Cava 5 2 3.Aortic Arch 6 4.Pulmonary Trunk 1 5.Left Atrium 12 9 6.Bicuspid Valve 10 7.Interventricular Septum 11 8.Apex of The Heart 9. Chordae tendineae 10.Papillary Muscle 7 11.Tricuspid Valve 12. Fossa Ovalis "Heart Coronal Section" Coronal Section of the Heart to show valves 1. Bicuspid 2. Pulmonary Semilunar 3. Tricuspid 4. Aortic Semilunar 5. Left Ventricle 6. Right Ventricle "Heart Coronal" 1.Pulmonary trunk 2.Right Atrium 3.Tricuspid Valve 4.Pulmonary Semilunar Valve 5.Myocardium 6.Interventricular Septum 7.Trabeculae Carneae 8.Papillary Muscle 9.Chordae Tendineae 10.Bicuspid Valve "Heart Anterior" 1. Brachiocephalic Artery 2. Left Common Carotid Artery 3. Ligamentum Arteriosum 4. Left Coronary Artery 5. Circumflex Artery 6. Great Cardiac Vein 7. Myocardium 8. Apex of The Heart 9. Pericardium (Visceral) 10. Right Coronary Artery 11. Auricle of Right Atrium 12. Pulmonary Trunk 13. Superior Vena Cava 14. Aortic Arch 15. Brachiocephalic vein "Heart Posterolateral" 1. Left Brachiocephalic vein 2. Right Brachiocephalic vein 3. Brachiocephalic Artery 4. Left Common Carotid Artery 5. Left Subclavian Artery 6. Aortic Arch 7. -
Anatomical Variants in the Termination of the Cephalic Vein Stoyan Novakov1*, Elena Krasteva2
Institute of Experimental Morphology, Pathology and Anthropology with Museum Bulgarian Anatomical Society Acta morphologica et anthropologica, 25 (3-4) Sofia • 2018 Anatomical Variants in the Termination of the Cephalic Vein Stoyan Novakov1*, Elena Krasteva2 1 Department of Anatomy, Histology and Embryology, 2Department of Propaedeutics of Surgical Di- seases, Medical Faculty, Medical University of Plovdiv * Corresponding author e-mail: [email protected] Jugulocephalic vein is atavistic structure which is very rare. The low incidence of the variations of the cephalic vein in deltopectoral triangle and its position on the anterior surface of the clavicle and the neck doesn’t make it less important for the clinical practice. Phylo- and ontogenesis explain the formation of the above mentioned variations. We followed the pattern of the cephalic vein in its proximal part and termination to describe possible variations. In this long term study on 140 upper limbs of 70 cadavers, 4 or 2,9% of the cephalic veins were variable. The direct empting of the cephalic vein into internal jugular is an exception with few descriptions at the moment. The rareness of this anatomical variation doesn’t make it less important for clinical practice. It is described as a possible obstacle in catheter implantation, clavicle fractures and creation of arteriovenous fistula in patients on hemodialysis. Key words:cadavers, human anatomy variation, cephalic vein, external jugular vein, jugulocephalic vein Introduction Cephalic vein (CV) belongs to the group of superficial veins of the upper limb. It usually forms over the anatomical snuff-box on the radial side of the wrist from the radial end of the dorsal venous plexus. -
Pectoral Muscles 1. Remove the Superficial Fascia Overlying the Pectoralis Major Muscle (Fig
BREAST, PECTORAL REGION, AND AXILLA LAB (Grant's Dissector (16th Ed.) pp. 28-38) TODAY’S GOALS: 1. Identify the major structural and tissue components of the female breast, including its blood supply. 2. Identify examples of axillary lymph nodes and understand the lymphatic drainage of the breast. 3. Identify the pectoralis major, pectoralis minor, and serratus anterior muscles. Demonstrate their bony attachments, nerve supply, and actions. 4. Identify the walls and associated muscles of the axilla. 5. Identify the axillary sheath, axillary vein, and the 6 major branches of the axillary artery. 6. Identify and trace the cords of the brachial plexus and their branches. DISSECTION NOTES: The donor should be in the supine position. Breast 1. The breast or mammary gland is a modified sweat gland embedded in the superficial fascia overlying the anterior chest wall. Refer to Fig. 2.5A for incisions for reflecting skin of the pectoral region to the mid-arm. Do this bilaterally. Within the superficial fascia in front of the shoulder and along the lateral and lower medial portions of the arm locate the cephalic and basilic veins and preserve these for now. Observe the course of the cephalic vein from the arm into the deltopectoral groove between the deltoid and pectoralis major muscles. 2. For those who have a female donor, mobilize the breast by inserting your fingers behind it within the retromammary space and separate it from the underlying deep fascia of the pectoralis major (see Fig. 2.7). An extension of breast tissue (axillary tail) from the superolateral (upper outer) quadrant often extends around the lateral border of the pectoralis major muscle into the axilla. -
Lab Exercises: Cardiovascular System Question # 1: Heart & Great Vessels I
Lab Exercises: Cardiovascular System Question # 1: Heart & Great Vessels I Right brachiocephalic vein Brachiocephalic artery Superior vena cava Pulmonary trunk Aorta Right ventricle Left ventricle Right atrium A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 2: Heart & Great Vessels II Left common carotid artery Brachiocephalic trunk Left subclavian artery Left brachiocephalic vein Left pulmonary artery Inferior vena cava Right pulmonary artery Right pulmonary vein A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 3: Heart & Great Vessels (Post) Left pulmonary artery Left subclavian artery Right brachiocephalic vein Left common carotid artery Right pulmonary artery Right pulmonary vein Left pulmonary vein Inferior vena cava A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 4: Arteries of Head & Neck Occipital artery Superficial temporal artery External carotid artery Internal carotid artery Facial artery Vertebral artery Common carotid artery A. E. B. F. C. G. D. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 5: Arteries of Trunk I Axillary artery Brachiocephailic trunk Right common carotid artery Left common carotid artery Left subclavian artery Axillary artery Arch of aorta Thoracic aorta A. E. B. F. C. G. D. H. Copyright © 2011 A.D.A.M., Inc. All rights reserved. Lab Exercises: Cardiovascular System Question # 6: Arteries of Trunk II Femoral artery Left common iliac artery Superior mesenteric artery Celiac trunk Inferior mesenteric artery Right renal artery Right testicular artery Left renal artery A. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
DVT Upper Extremity
UT Southwestern Department of Radiology Ultrasound – Upper Extremity Deep Venous Thrombosis Evaluation PURPOSE: To evaluate the upper extremity superficial and deep venous system for patency. SCOPE: Applies to all ultrasound venous Doppler studies of the lower extremities in Imaging Services / Radiology EPIC ORDERABLE: • UTSW: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT • PHHS: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT INDICATIONS: • Symptoms such as upper extremity swelling, pain, fever, warmth, change in color, palpable cord • Suspected venous occlusion, or DVT based on clinical prediction rules (eg. Well’s score or D- Dimer) • Indwelling or recent PICC or central line • Chest pain and/or shortness of breath • Suspected or known pulmonary embolus • Follow-up known deep venous thrombosis (DVT) CONTRAINDICATIONS: No absolute contraindications EQUIPMENT: Preferably a linear array transducer that allows for appropriate resolution of anatomy (frequency range of 9 mHz or greater), capable of duplex imaging. Sector or curvilinear transducers may be required for appropriate penetration in patients with edema or large body habitus. PATIENT PREPARATION: • None EXAMINATION: GENERAL GUIDELINES: A complete examination includes evaluation of the superficial and deep venous system of the upper extremity including the internal jugular, innominate, subclavian, axillary, paired brachial, basilic, and cephalic veins. EXAM INITIATION: • Introduce yourself to the patient • Verify patient identity using patient name and DOB • Explain test • Obtain patient history including symptoms. Enter and store data page US DVT Upper Extremity 05-31-2020.docx 1 | Page Revision date: 05-31-2020 UT Southwestern Department of Radiology • Place patient in supine position with arm extended TECHNICAL CONSIDERATIONS: • Review any prior imaging, making note of any previous thrombus burden. -
The Clinical Anatomy of the Cephalic Vein in the Deltopectoral Triangle
Folia Morphol. Vol. 67, No. 1, pp. 72–77 Copyright © 2008 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The clinical anatomy of the cephalic vein in the deltopectoral triangle M. Loukas1, 2, C.S. Myers1, Ch.T. Wartmann1, R.S. Tubbs3, T. Judge1, B. Curry1, R. Jordan1 1Department of Anatomical Sciences, St. George’s University, School of Medicine, Grenada, West Indies 2Department of Education and Development, Harvard Medical School, Boston MA, USA 3Department of Cell Biology and Pediatric Neurosurgery, University of Alabama at Brimingham, AL, USA [Received 19 June 2007; Revised 3 January 2008; Accepted 7 January 2008] Identification and recognition of the cephalic vein in the deltopectoral triangle is of critical importance when considering emergency catheterization proce- dures. The aim of our study was to conduct a cadaveric study to access data regarding the topography and the distribution patterns of the cephalic vein as it relates to the deltopectoral triangle. One hundred formalin fixed cadavers were examined. The cephalic vein was found in 95% (190 right and left) spec- imens, while in the remaining 5% (10) the cephalic vein was absent. In 80% (152) of cases the cephalic vein was found emerging superficially in the lateral portion of the deltopectoral triangle. In 30% (52) of these 152 cases the ceph- alic vein received one tributary within the deltopectoral triangle, while in 70% (100) of the specimens it received two. In the remaining 20% (38) of cases the cephalic vein was located deep to the deltopectoral fascia and fat and did not emerge through the deltopectoral triangle but was identified medially to the coracobrachialis and inferior to the medial border of the deltoid. -
Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1). -
Redalyc.Anatomical Study of the Accessory Axillary Vein in Cadavers
Jornal Vascular Brasileiro ISSN: 1677-5449 [email protected] Sociedade Brasileira de Angiologia e de Cirurgia Vascular Brasil Barbosa Felix, Valtuir; Bernardino dos Santos, José André; Jucá de Moraes Fernandes, Katharina; Rolemberg Gama Cabral, Dhayanna; Silva dos Santos, Carlos Adriano; de Sousa Rodrigues, Célio Fernando; Silva Brito Lima, Jacqueline; Casado Ramalho, Antônio José Anatomical study of the accessory axillary vein in cadavers: a contribution to the axillary surgical approach Jornal Vascular Brasileiro, vol. 15, núm. 4, octubre-diciembre, 2016, pp. 275-279 Sociedade Brasileira de Angiologia e de Cirurgia Vascular São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=245049803004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ORIGINAL ARTICLE Anatomical study of the accessory axillary vein in cadavers: a contribution to the axillary surgical approach Estudo anatômico da veia axilar acessória em cadáveres: uma contribuição à abordagem cirúrgica axilar Valtuir Barbosa Felix1,2, José André Bernardino dos Santos2, Katharina Jucá de Moraes Fernandes2, 2 3 3 Dhayanna Rolemberg Gama Cabral *, Carlos Adriano Silva dos Santos , Célio Fernando de Sousa Rodrigues , Jacqueline Silva Brito Lima4, Antônio José Casado Ramalho2 Abstract Background: The axillary vein is an important blood vessel that participates in drainage of the upper limb. Some individuals present a second axillary vein (accessory axillary vein), which is an important collateral drainage path. Objectives: The goal of this study was to determine the incidence of the accessory axillary vein and to describe this vessel’s topography. -
Radial Medial Head Triceps Branch Transfer to Axillary Nerve by Axillary Approach Acesso Ao Nervo Axilar Por Via Axilar Anterior
THIEME 134 Review Article | Artigo de Revisão Radial Medial Head Triceps Branch Transfer to Axillary Nerve by Axillary Approach Acesso ao nervo axilar por via axilar anterior José Marcos Pondé 1 Lazaro Santos 2 João Pedro Magalhaes 2 Ana Flavia D ’Álmeida 2 1 Department of Neurosciences and Mental Health, Universidade Address for correspondence José Marcos Pondé, MD, PhD, Av. Paulo Federal da Bahia (UFBA), Salvador, Bahia, Brazil VI, 111, Pituba, Salvador, BA, Brazil 41810-000 2 Bahian School of Medicine and Public Health, Salvador, Bahia, Brazil (e-mail: [email protected]). Arq Bras Neurocir 2015;34:134 –138. - Abstract Objective To describe axillary approach for axillary nerve transfer with radial nerve branch in brachial plexus lesions. Methods Six patients aged 24 to 54 (mean 30) years with traumatic superior trunk brachial plexus injury underwent axillary approach between October 2011 and April 2012. On physical examination prior to surgery, they could not perform shoulder abduction, external rotation, or elbow flexion. Surgical approach was made through axillary pathway without any muscular section. The transfer was done with the radial branch to the medial head of triceps. In addition to transfer to axillary nerve, each Keywords patient had spinal accessory nerve transferred to suprascapular nerve and ulnar nerve ► axillary nerve fascicle transferred to musculocutaneous nerve. ► brachial plexus Conclusion Theaxillary approach allowseasyaccesstoaxillarynerveand, therefore, is ► transfer a feasible pathway to transferences involving this nerve. Resumo Objetivo Apresentar via axilar por transferência de nervo axilar com ramo de nervo radial em lesões do plexus braquial. Métodos Seis pacientes com idade entre 24 e 54 anos (média de 30) com lesão braquial traumática do plexus no tronco superior submetidos a via axilar entre outubro de 2011 e abril de 2012. -
The Cardiovascular System
11 The Cardiovascular System WHAT The cardiovascular system delivers oxygen and HOW nutrients to the body tissues The heart pumps and carries away wastes blood throughout the body such as carbon dioxide in blood vessels. Blood flow via blood. requires both the pumping action of the heart and changes in blood pressure. WHY If the cardiovascular system cannot perform its functions, wastes build up in tissues. INSTRUCTORS Body organs fail to function properly, New Building Vocabulary and then, once oxygen becomes Coaching Activities for this depleted, they will die. chapter are assignable in hen most people hear the term cardio- only with the interstitial fluid in their immediate Wvascular system, they immediately think vicinity. Thus, some means of changing and of the heart. We have all felt our own “refreshing” these fluids is necessary to renew the heart “pound” from time to time when we are ner- nutrients and prevent pollution caused by vous. The crucial importance of the heart has been the buildup of wastes. Like a bustling factory, the recognized for ages. However, the cardiovascular body must have a transportation system to carry system is much more than just the heart, and its various “cargoes” back and forth. Instead of from a scientific and medical standpoint, it is roads, railway tracks, and subways, the body’s important to understand why this system is so vital delivery routes are its hollow blood vessels. to life. Most simply stated, the major function of the Night and day, minute after minute, our tril- cardiovascular system is transportation. Using lions of cells take up nutrients and excrete wastes. -
Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres