The Foraging Ecology of Fruit Bats in the Seasonal Environment of Central Zambia

Total Page:16

File Type:pdf, Size:1020Kb

The Foraging Ecology of Fruit Bats in the Seasonal Environment of Central Zambia THE FORAGING ECOLOGY OF FRUIT BATS IN THE SEASONAL ENVIRONMENT OF CENTRAL ZAMBIA By HEIDI V. RICHTER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Heidi V. Richter ACKNOWLEDGMENTS Many people and organizations contributed financially, logistically, or personally to the success of this project. The Lubee Foundation provided funding and Dr. Allyson Walsh was fundamental in securing those research funds. This research was also supported in part by a David H. Smith Fellowship awarded by The Nature Conservancy to Dr. Graeme Cumming. I thank John Seyjaget for initially sparking my interest in fruit bats, and helping me get the funding to follow through on my project. In Zambia, I would like to thank the Kasanka Trust as well as Edmund and Kim Farmer for allowing me to live, work and conduct research at Kasanka National Park. The Zambian Wildlife Authority was extremely helpful in issuing the necessary permits for this research. I thank Julian and Kelly Green for their hospitality when I was in Lusaka and Tadg Wixted and his office for logistical support. Changwe Kenneth Yotamu and Clifford Kandonga were of particular value in catching bats, identifying trees and keeping me safe from harm. I thank Christopher Miselo, Christopher Mwape, Nyambe, Kennedy, Benson, Robert Chisenga, Paul, Friday Bwanga, Boas Mwape, Brighton, BV, Timothy Ndashe, Able, Shebbie, Kebby, Edson Chipale, Chibesa Mwaba, J. Mwewa, and Haggai Mwape for their help in collecting data. I thank Kennedy and George for their early morning help when I returned from a long night of mist-netting. Robin Lentz, Charlie Bear and Donna Bear–Hull were invaluable assistants in the field, and contributed an amazing amount during their stay in Zambia. I cannot thank iii them enough for traveling to Africa to assist with this project. I thank Charlie for providing me with his photographs from Zambia and allowing me to use them in my presentations. Alastair provided entertainment on some long mist netting nights. Cristina Evangelista was very supportive of my research, traveling to Zambia to help with fieldwork and assisting with editing in the U.S. Without her initial influence I never would have ended up in Africa. My husband, John Howard, has been extremely supportive of my working in far away places. I thank my labmates, especially Jeremy Dixon, Elina Garrison, Arpat Ozgul, and Melissa Moyer, for their help, understanding, and guidance whenever I had questions and for their daily support and friendship. Dr. Katie Sieving, Dr. Colin Chapman and Dr. Tom Kunz also deserve thanks for serving on my committee and providing comments on my methodology and manuscripts. I thank Dr. Madan Oli for not only serving as a de factor committee member but also for spending his free time teaching statistics. I thank my advisor and chair, Dr. Graeme Cumming, for supporting me with funding so that I could pursue this project. I would also like to thank him for his advice and guidance throughout this process. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix ABSTRACT....................................................................................................................... xi CHAPTER 1 INTRODUCTION ........................................................................................................1 Megachiropteran Assemblages.....................................................................................2 Effects of Seasonality in Resources..............................................................................3 Migration Strategies in Fruit Bats.................................................................................3 Resident and Migratory Species Interactions ...............................................................4 Project Objectives.........................................................................................................5 2 FOOD AVAILABILITY AND ANIMAL MIGRATIONS: THE BEHAVIOR OF THE STRAW–COLORED FRUIT BAT AT KASANKA NATIONAL PARK, ZAMBIA.......................................................................................................................7 Methods ......................................................................................................................10 Study Species.......................................................................................................10 Study Site.............................................................................................................10 Vegetation Monitoring ........................................................................................13 Results.........................................................................................................................15 Species Results ....................................................................................................15 Vegetation Results...............................................................................................16 Discussion...................................................................................................................23 Summary of Results ............................................................................................23 Alternative Hypotheses .......................................................................................24 Conservation Implications...................................................................................28 3 DISTINGUISHING MEGACHIROPTERAN SPECIES USING MORPHOLOGICAL CHARACTERISTICS IN KASANKA NATIONAL PARK, ZAMBIA.....................................................................................................................30 v Methods ......................................................................................................................32 Study Site.............................................................................................................32 Mist Netting Methods..........................................................................................32 Analysis of Species Data.....................................................................................34 Results.........................................................................................................................35 Capture Data........................................................................................................35 Megachiroptera Species Identification................................................................37 Species assignments .....................................................................................37 Summary of group analysis..........................................................................38 Palate Data...........................................................................................................40 Discussion...................................................................................................................43 Identification of Sympatric Species.....................................................................43 Mathematical Methods in Species Discrimination..............................................45 Research Needs ...................................................................................................45 4 THE RESPONSE OF FRUIT BATS TO CHANGING RESOURCE AVAILABILITY IN KASANKA NATIONAL PARK, ZAMBIA...........................48 Methods ......................................................................................................................50 Study Site.............................................................................................................50 Mist Netting Methods..........................................................................................50 Bat Species Data..................................................................................................51 Vegetation Methods.............................................................................................51 Capture Rates.......................................................................................................53 Results.........................................................................................................................54 Bat Species Data..................................................................................................54 Vegetation Analysis.............................................................................................54 Analysis of Capture Rates ...................................................................................57 Capture rates and food availability...............................................................57 Analysis of variance.....................................................................................59 Mantel test results.........................................................................................59 Discussion...................................................................................................................63 Additional Influences on Assemblage Structure .................................................64
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies
    www.nature.com/scientificreports OPEN Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Received: 19 April 2017 Accepted: 25 May 2017 Infesting Previously Unknown Published: xx xx xxxx Pteropodid Bats in Uganda Tony L. Goldberg 1,2,3, Andrew J. Bennett1, Robert Kityo3, Jens H. Kuhn4 & Colin A. Chapman3,5 Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next- generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet- to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites. Bats (order Chiroptera) represent the second largest order of mammals after rodents (order Rodentia).
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Zoologische Mededelingen
    ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 55 no. 14 4 maart 1980 A NEW FRUIT BAT OF THE GENUS MYONYCTERIS MATSCHIE, 1899, FROM EASTERN KENYA AND TANZANIA (MAMMALIA, MEGACHIROPTERA) by W. BERGMANS Instituut voor Taxonomische Zoölogie, Universiteit van Amsterdam With 4 text-figures ABSTRACT Myonycteris relicta n. sp. is described from the Shimba Hills in southeast Kenya and from the Usambara Mountains in northeast Tanzania. The species is larger than the only other known African mainland species of the genus, Myonycteris torquata (Dobson, 1878), from the Central and West African rain forests and, if compared to M. torquata and the only other species in the genus, M. brachycephala (Bocage, 1889) from São Tomé, has a relatively longer rostrum, a more deflected cranial axis, and further differs in number, shape and position of its teeth. The new species provides new arguments for the relationship between the genera Myonycteris Matschie, 1899, and Lissonycteris Andersen, 1912. It is believed that Myonycteris relicta may be a forest species and as such restricted to isolated East African forests. INTRODUCTION During a visit to the Zoologisches Museum in Berlin (ZMB), in April 1979, the author found two fruit bat specimens from the Tanzanian Usa- mbara Mountains, which proved to represent an undescribed taxon. Later, in June 1979, Dr C. Smeenk of the Rijksmuseum van Natuurlijke Historie at Leiden (RMNH) recognized a third specimen of this taxon in newly acquired material from the Shimba Hills in southeast Kenya. The bats differ on specific level from all other known fruit bats, and are described in the present paper.
    [Show full text]
  • Figs1 ML Tree.Pdf
    100 Megaderma lyra Rhinopoma hardwickei 71 100 Rhinolophus creaghi 100 Rhinolophus ferrumequinum 100 Hipposideros armiger Hipposideros commersoni 99 Megaerops ecaudatus 85 Megaerops niphanae 100 Megaerops kusnotoi 100 Cynopterus sphinx 98 Cynopterus horsfieldii 69 Cynopterus brachyotis 94 50 Ptenochirus minor 86 Ptenochirus wetmorei Ptenochirus jagori Dyacopterus spadiceus 99 Sphaerias blanfordi 99 97 Balionycteris maculata 100 Aethalops alecto 99 Aethalops aequalis Thoopterus nigrescens 97 Alionycteris paucidentata 33 99 Haplonycteris fischeri 29 Otopteropus cartilagonodus Latidens salimalii 43 88 Penthetor lucasi Chironax melanocephalus 90 Syconycteris australis 100 Macroglossus minimus 34 Macroglossus sobrinus 92 Boneia bidens 100 Harpyionycteris whiteheadi 69 Harpyionycteris celebensis Aproteles bulmerae 51 Dobsonia minor 100 100 80 Dobsonia inermis Dobsonia praedatrix 99 96 14 Dobsonia viridis Dobsonia peronii 47 Dobsonia pannietensis 56 Dobsonia moluccensis 29 Dobsonia anderseni 100 Scotonycteris zenkeri 100 Casinycteris ophiodon 87 Casinycteris campomaanensis Casinycteris argynnis 99 100 Eonycteris spelaea 100 Eonycteris major Eonycteris robusta 100 100 Rousettus amplexicaudatus 94 Rousettus spinalatus 99 Rousettus leschenaultii 100 Rousettus aegyptiacus 77 Rousettus madagascariensis 87 Rousettus obliviosus Stenonycteris lanosus 100 Megaloglossus woermanni 100 91 Megaloglossus azagnyi 22 Myonycteris angolensis 100 87 Myonycteris torquata 61 Myonycteris brachycephala 33 41 Myonycteris leptodon Myonycteris relicta 68 Plerotes anchietae
    [Show full text]
  • ANTIQUITY 2008 (In Press) an Unexpected, Stripe-Faced Flying Fox in Ice Age Rock Art of Australia's Kimberley. “Jack” Pett
    ANTIQUITY 2008 (in press) An Unexpected, Stripe-faced Flying Fox in Ice Age Rock Art of Australia’s Kimberley. “Jack” Pettigrew, Marilyn Nugent, Anscar McPhee, Josh Wallman Bradshaw rock art of northern Australia enjoys continuing controversy concerning what community painted them and how to interpret the images (Roy 2002). The keen observation and accurate depictions of the natural world shown here, as well as the extraordinary longevity of the stains used, all tend to support the side of the controversy that posits a distinct cultural entity. We describe a painting unmistakably depicting flying foxes with features not found in bats presently found in Australia. Thermoluminescence dating of wasp nest overlying the art suggests an ice age migration to Australia, either of the bats or of the artists who painted them, a more likely scenario biologically than younger dates. The bat depictions were found on a sandstone wall protected by overhangs, near Kalumburu (14.30 °S; 126.64 °E), amongst other walls showing characteristic Bradshaw art (Walsh 2002). The depiction shows eight roosting megabats (flying foxes, Family Pteropodidae, sub-Order Megachiroptera) hanging from a slender branch, or more likely, a vine (Figs 1,2). Each bat has a distinctive white facial stripe and pale belly (Fig. 3). Figure1. White-striped flying foxes depicted in Bradshaw rock art at Kalumburu, in the Kimberley of Western Australia. Figure 2. Extension, to the left, of the same depicted group of shown in Fig. 1, with which there is some overlap. Dating: The indelible inks used in Bradshaw art penetrate more than a millimetre into the sandstone but have resisted all attempts so far to date them directly, with a number of different estimates of their age (Michaelson and Ebersole 2000).
    [Show full text]
  • Attacked from Above and Below, New Observations of Cooperative and Solitary Predators on Roosting Cave Bats
    bioRxiv preprint doi: https://doi.org/10.1101/550582; this version posted February 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Attacked from above and below, new observations of cooperative and solitary predators on roosting cave bats Krizler Cejuela. Tanalgo1, 2, 3, 7*, Dave L. Waldien4, 5, 6, Norma Monfort6, Alice Catherine Hughes1, 3* 1Landscape Ecology Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 2International College, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 3Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 4Harrison Institute, Bowerwood House, 15 St Botolph’s Road, Sevenoaks, Kent, TN13 3AQ, United Kingdom 5Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States of America 6Philippine Bats for Peace Foundation Inc., 5 Ramona Townhomes, Guadalupe Village, Lanang, Davao City 7Department of Biological Sciences, College of Arts and Sciences, University of Southern Mindanao, Kabacan 9407, North Cotabato, the Republic of the Philippines Corresponding authors: ACH ([email protected]) and KCT ([email protected]) Landscape Ecology Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China Abstract Predation of bats in their roosts has previously only been attributed to a limited number of species such as various raptors, owls, and snakes.
    [Show full text]
  • Final Report on the Project
    BP Conservation Programme (CLP) 2005 PROJECT NO. 101405 - BRONZE AWARD WINNER ECOLOGY, DISTRIBUTION, STATUS AND PROTECTION OF THREE CONGOLESE FRUIT BATS FINAL REPORT Patrick KIPALU Team Leader Observatoire Congolais pour la Protection de l’Environnement OCPE – ong Kinshasa – Democratic Republic of the Congo E-mail: [email protected] APRIL 2009 1 Table of Content Acknowledgements…………………………………………………………………. p3 I. Project Summary……………………………………………………………….. p4 II. Introduction…………………………………………………………………… p4-p7 III. Materials and Methods ……………………………………………………….. p7-p10 IV. Results per Study Site…………………………………………………………. p10-p15 1. Pointe-Noire ………………………………………………………….. p10-p12 2. Mayumbe Forest /Luki Reserve……………………………………….. p12-p13 3. Zongo Forest…………………………………………………………... p14 4. Mbanza-Ngungu ………………………………………………………. P15 V. General Results ………………………………………………………………p15-p16 VI. Discussions……………………………………………………………………p17-18 VII. Conclusion and Recommendations……………………………………….p 18-p19 VIII. Bibliography………………………………………………………………p20-p21 Acknowledgements 2 The OCPE (Observatoire Congolais pour la Protection de l’Environnement) project team would like to start by expressing our gratefulness and saying thank you to the BP Conservation Program, which has funded the execution of this project. The OCPE also thanks the Van Tienhoven Foundation which provided a further financial support. Without these organisations, execution of the project would not have been possible. We would like to thank specially the BPCP “dream team”: Marianne D. Carter, Robyn Dalzen and our regretted Kate Stoke for their time, advices, expertise and care, which helped us to complete this work, Our special gratitude goes to Dr. Wim Bergmans, who was the hero behind the scene from the conception to the execution of the research work. Without his expertise, advices and network it would had been difficult for the project team to produce any result from this project.
    [Show full text]
  • POST-HARVEST SEED PHYSIOLOGY and CONSERVATION of the GERMPLASM of Syzygium Cordatum Hochst
    POST-HARVEST SEED PHYSIOLOGY AND CONSERVATION OF THE GERMPLASM OF Syzygium cordatum Hochst. by Anastacia Chepkorir Cheruiyot Submitted in partial fulfillment of the requirements of the degree of Master in Science in the School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa 2013 DECLARATION 1 – PLAGIARISM I, Anastacia Chepkorir Cheruiyot declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference sections. Signed: 2 DECLARATION 2 – PUBLICATIONS DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and /or include research presented in this thesis (include publications in preparation, submitted, in press and published and give details of the contributions of each author to the experimental work and writing of each publication). Publication 1. Cheruiyot, C., Wesley-Smith, J., Berjak, P.
    [Show full text]
  • Bats in Dry Valleys with Columnar Cacti and Spiny Vegetation (Lopez Et Al., 2004; S.G.Perez, Pers.Comm.)
    Convention on the Conservation of Migratory Species of Wild Animals (CMS) Secretariat provided by the United Nations Environment Programme (UNEP) Twelfth Meeting of the CMS Scientific Council Glasgow, Scotland, United Kingdom, 31 March -3 April 2004 CMS/ScC12/Doc.12 DRAFT PROPOSALS FOR THE INCLUSION OF BAT SPECIES ON CMS APPENDICES (Prepared by the Secretariat) 1. The eight draft listing proposals attached to this note were developed by Mr Tony Hutson, Co- chair of the IUCN Chiroptera Specialist Group on behalf of the CMS Secretariat in order to pre- identify species that, based on the scientific knowledge available, would appear to be eligible for listing on the CMS Appendices. They have been submitted to the Scientific Council for its consideration. Based on a positive evaluation from the Scientific Council, the Secretariat will address appropriate Parties and invite them to consider and subsequently submit the proposals to the Eighth Meeting of the Conference of the Parties. 2. The Council may wish to consider the listing proposals in conjunction with the updated study by Mr Hutson (ScC12/Doc.13). The Council may also wish to take into consideration the draft CMS Strategic Plan (2006-2011) (ScC12/Doc.4), and the Scientific Council draft Implementation Plan to the revised CMS Strategic Plan (ScC12/Doc.3) under agenda items 3.2 and 3.0, respectively. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. DRAFT PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS (Updated February 2004) A.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Updates to the Zoonotic Niche Map of Ebola Virus Disease in Africa
    RESEARCH ADVANCE Updates to the zoonotic niche map of Ebola virus disease in Africa David M Pigott1,2*, Anoushka I Millear1, Lucas Earl1, Chloe Morozoff1*, Barbara A Han3, Freya M Shearer2, Daniel J Weiss4,5, Oliver J Brady2, Moritz UG Kraemer4,5, Catherine L Moyes2, Samir Bhatt4,5, Peter W Gething4,5, Nick Golding2,6, Simon I Hay1,2 1Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States; 2Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom; 3Cary Institute of Ecosystem Studies, New York, United States; 4Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, United Kingdom; 5Department of Zoology, University of Oxford, Oxford, United Kingdom; 6Department of BioSciences, University of Melbourne, Parkville, Australia Abstract As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers. DOI: 10.7554/eLife.16412.001 *For correspondence: pigottdm@ uw.edu (DMP); [email protected] (CM) Competing interest: See page 10 Introduction Since the index case in 2013, the West African Ebola epidemic has killed more than 11,000 people Funding: See page 10 (World Heath Organization, 2016) and exposed national and international inadequacies in pan- Received: 30 March 2016 demic preparedness and response (Moon et al., 2015).
    [Show full text]