What Is a Heuristic?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Navarra Ecclesiastical Faculty of Philosophy
UNIVERSITY OF NAVARRA ECCLESIASTICAL FACULTY OF PHILOSOPHY Mark Telford Georges THE PROBLEM OF STORING COMMON SENSE IN ARTIFICIAL INTELLIGENCE Context in CYC Doctoral dissertation directed by Dr. Jaime Nubiola Pamplona, 2000 1 Table of Contents ABBREVIATIONS ............................................................................................................................. 4 INTRODUCTION............................................................................................................................... 5 CHAPTER I: A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE .................................. 9 1.1. THE ORIGIN AND USE OF THE TERM “ARTIFICIAL INTELLIGENCE”.............................................. 9 1.1.1. Influences in AI................................................................................................................ 10 1.1.2. “Artificial Intelligence” in popular culture..................................................................... 11 1.1.3. “Artificial Intelligence” in Applied AI ............................................................................ 12 1.1.4. Human AI and alien AI....................................................................................................14 1.1.5. “Artificial Intelligence” in Cognitive Science................................................................. 16 1.2. TRENDS IN AI........................................................................................................................... 17 1.2.1. Classical AI .................................................................................................................... -
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Iaj 10-3 (2019)
Vol. 10 No. 3 2019 Arthur D. Simons Center for Interagency Cooperation, Fort Leavenworth, Kansas FEATURES | 1 About The Simons Center The Arthur D. Simons Center for Interagency Cooperation is a major program of the Command and General Staff College Foundation, Inc. The Simons Center is committed to the development of military leaders with interagency operational skills and an interagency body of knowledge that facilitates broader and more effective cooperation and policy implementation. About the CGSC Foundation The Command and General Staff College Foundation, Inc., was established on December 28, 2005 as a tax-exempt, non-profit educational foundation that provides resources and support to the U.S. Army Command and General Staff College in the development of tomorrow’s military leaders. The CGSC Foundation helps to advance the profession of military art and science by promoting the welfare and enhancing the prestigious educational programs of the CGSC. The CGSC Foundation supports the College’s many areas of focus by providing financial and research support for major programs such as the Simons Center, symposia, conferences, and lectures, as well as funding and organizing community outreach activities that help connect the American public to their Army. All Simons Center works are published by the “CGSC Foundation Press.” The CGSC Foundation is an equal opportunity provider. InterAgency Journal FEATURES Vol. 10, No. 3 (2019) 4 In the beginning... Special Report by Robert Ulin Arthur D. Simons Center for Interagency Cooperation 7 Military Neuro-Interventions: The Lewis and Clark Center Solving the Right Problems for Ethical Outcomes 100 Stimson Ave., Suite 1149 Shannon E. -
Bounded Rationality Till Grüne-Yanoff* Royal Institute of Technology, Stockholm, Sweden
Philosophy Compass 2/3 (2007): 534–563, 10.1111/j.1747-9991.2007.00074.x Bounded Rationality Till Grüne-Yanoff* Royal Institute of Technology, Stockholm, Sweden Abstract The notion of bounded rationality has recently gained considerable popularity in the behavioural and social sciences. This article surveys the different usages of the term, in particular the way ‘anomalous’ behavioural phenomena are elicited, how these phenomena are incorporated in model building, and what sort of new theories of behaviour have been developed to account for bounded rationality in choice and in deliberation. It also discusses the normative relevance of bounded rationality, in particular as a justifier of non-standard reasoning and deliberation heuristics. For each of these usages, the overview discusses the central methodological problems. Introduction The behavioural sciences, in particular economics, have for a long time relied on principles of rationality to model human behaviour. Rationality, however, is traditionally construed as a normative concept: it recommends certain actions, or even decrees how one ought to act. It may therefore not surprise that these principles of rationality are not universally obeyed in everyday choices. Observing such rationality-violating choices, increasing numbers of behavioural scientists have concluded that their models and theories stand to gain from tinkering with the underlying rationality principles themselves. This line of research is today commonly known under the name ‘bounded rationality’. In all likelihood, the term ‘bounded rationality’ first appeared in print in Models of Man (Simon 198). It had various terminological precursors, notably Edgeworth’s ‘limited intelligence’ (467) and ‘limited rationality’ (Almond; Simon, ‘Behavioral Model of Rational Choice’).1 Conceptually, Simon (‘Bounded Rationality in Social Science’) even traces the idea of bounded rationality back to Adam Smith. -
An Investigation of the Search Space of Lenat's AM Program Redacted for Privacy Abstract Approved: Thomas G
AN ABSTRACT OF THE THESIS OF Prafulla K. Mishra for the degree of Master of Sciencein Computer Science presented on March 10,1988. Title: An Investigation of the Search Space of Lenat's AM Program Redacted for Privacy Abstract approved:_ Thomas G. Dietterich. AM is a computer program written by Doug Lenat that discoverselementary mathematics starting from some initial knowledge of set theory. Thesuccess of this program is not clearly understood. This work is an attempt to explore the searchspace of AM in order to un- derstand the success and eventual failure of AM. We show thatoperators play an important role in AM. Operators of AMcan be divided into critical and unneces- sary. The critical operators can be further divided into implosive and explosive. Heuristics are needed only for the explosive operators. Most heuristics and operators in AM can be removed without significant ef- fects. Only three operators (Coalesce, Invert, Repeat) andone initial concept (Bag Union) are enough to discover most of the elementary math concepts that AM discovered. An Investigation of the Search Space of Lenat's AM Program By Prafulla K. Mishra A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed March 10, 1988 Commencement June 1988 APPROVED: Redacted for Privacy Professor of Computer Science in charge of major Redacted for Privacy Head of Department of Computer Science Redacted for Privacy Dean of GradtiaUe School Date thesis presented March 10, 1988 Typed by Prafulla K. Mishra for Prafulla K. Mishra ACKNOWLEDGEMENTS I am indebted to Tom Dietterich for his help, guidanceand encouragement throughout this work. -
Arxiv:1404.7828V4 [Cs.NE] 8 Oct 2014 to Those Who Contributed to the Present State of the Art
Deep Learning in Neural Networks: An Overview Technical Report IDSIA-03-14 / arXiv:1404.7828 v4 [cs.NE] (88 pages, 888 references) Jurgen¨ Schmidhuber The Swiss AI Lab IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Artificiale University of Lugano & SUPSI Galleria 2, 6928 Manno-Lugano Switzerland 8 October 2014 Abstract In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distin- guished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. LATEX source: http://www.idsia.ch/˜juergen/DeepLearning8Oct2014.tex Complete BIBTEX file (888 kB): http://www.idsia.ch/˜juergen/deep.bib Preface This is the preprint of an invited Deep Learning (DL) overview. One of its goals is to assign credit arXiv:1404.7828v4 [cs.NE] 8 Oct 2014 to those who contributed to the present state of the art. I acknowledge the limitations of attempting to achieve this goal. The DL research community itself may be viewed as a continually evolving, deep network of scientists who have influenced each other in complex ways. Starting from recent DL results, I tried to trace back the origins of relevant ideas through the past half century and beyond, sometimes using “local search” to follow citations of citations backwards in time. -
AI Thinks Like a Corporation—And That's Worrying
Topics Current edition More Subscribe Log in or sign up Search Open Future Manage subscription Open Voices AI thinks like a corporation—and that’s worrying Arti!cial intelligence was born of organisational decision-making and state power; it needs human ethics, says Jonnie Penn of the University of Cambridge Open Future Nov 26th 2018 | by BY JONNIE PENN Arti!cial intelligence is everywhere but it is considered in a wholly ahistorical way. To understand the impact AI will have on our lives, it is vital to appreciate the context in which the !eld was established. After all, statistics and state control have evolved hand in hand for hundreds of years. Consider computing. Its origins have been traced not only to analytic philosophy, pure mathematics and Alan Turing, but perhaps surprisingly, to the history of public administration. In “The Government Machine: A Revolutionary History of the Computer” from 2003, Jon Agar of University College London charts the development of the British civil service as it ballooned from 16,000 employees in 1797 to 460,000 by 1999. He noticed an uncanny similarity between the functionality of a human bureaucracy and that of the digital electronic computer. (He confessed that he could not tell whether this observation was trivial or profound.) Get our daily newsletter Upgrade your inbox and get our Daily Dispatch and Editor's Picks. Email address Sign up now Both systems processed large quantities of information using a hierarchy of pre-set but adaptable rules. Yet one predated the other. This suggested a telling link between the organisation of human social structures and the digital tools designed to serve them. -
Computational Creativity: Three Generations of Research and Beyond
Computational Creativity: Three Generations of Research and Beyond Debasis Mitra Department of Computer Science Florida Institute of Technology [email protected] Abstract In this article we have classified computational creativity research activities into three generations. Although the 2. Philosophical Angles respective system developers were not necessarily targeting Philosophers try to understand creativity from the their research for computational creativity, we consider their works as contribution to this emerging field. Possibly, the historical perspectives – how different acts of creativity first recognition of the implication of intelligent systems (primarily in science) might have happened. Historical toward the creativity came with an AAAI Spring investigation of the process involved in scientific discovery Symposium on AI and Creativity (Dartnall and Kim, 1993). relied heavily on philosophical viewpoints. Within We have here tried to chart the progress of the field by philosophy there is an ongoing old debate regarding describing some sample projects. Our hope is that this whether the process of scientific discovery has a normative article will provide some direction to the interested basis. Within the computing community this question researchers and help creating a vision for the community. transpires in asking if analyzing and computationally emulating creativity is feasible or not. In order to answer this question artificial intelligence (AI) researchers have 1. Introduction tried to develop computing systems to mimic scientific One of the meanings of the word “create” is “to produce by discovery processes (e.g., BACON, KEKADA, etc. that we imaginative skill” and that of the word “creativity” is “the will discuss), almost since the beginning of the inception of ability to create,’ according to the Webster Dictionary. -
A Heuristic Study of the Process of Becoming an Integrative Psychotherapist
'This Time it's Personal': A Heuristic Study of the Process of Becoming an Integrative Psychotherapist. A thesis submitted to the University of Manchester for the degree of Professional Doctorate in Counselling Psychology in the Faculty of Humanities 2015 Cathal O’Connor 1 2 Contents Abstract 7 Declaration 8 Copyright Statement 9 Dedication and Acknowledgements 11 Chapter 1: Introduction 12 Introduction 12 The person of the researcher: What's past is 12 prologue There is an 'I' in thesis 13 Statement of the problem 15 The structure of my research 16 What is counselling psychology? 17 Integration 18 What is psychotherapy? 20 Conclusion 21 Chapter 2: Literature Review 22 Introduction 22 Researching psychotherapy and integration 22 Personal and professional development in 24 counselling psychology training What is personal development? 25 Therapist training 27 Stages of development 34 Supervision 35 Personal development and personal therapy 37 Training in integrative psychotherapy 41 Developing an integrative theory of practice 46 Journaling for personal and professional 48 development Conclusion 57 Chapter 3: Methodology 59 Introduction 59 3 Philosophical positioning 59 Psychology and counselling psychology 60 Epistemology and the philosophy of science 60 The philosophy of scientific psychology 62 Qualitative research 63 Phenomenology 64 Research design 65 Initial engagement 69 The research question 71 Immersion 73 Incubation 76 Illumination 78 Explication 79 Creative synthesis 80 Data generation: Journaling 80 Data analysis: Thematic analysis -
Behavioral Economics in Context Applications for Development, Inequality & Discrimination, Finance, and Environment
Behavioral Economics In Context Applications for Development, Inequality & Discrimination, Finance, and Environment By Anastasia C. Wilson An ECI Teaching Module on Social and Environmental Issues in Economics Global Development Policy Center Boston University 53 Bay State Road Boston, MA 02155 bu.edu/gdp Economics in Context Initiative, Global Development Policy Center, Boston University, 2020. Permission is hereby granted for instructors to copy this module for instructional purposes. Suggested citation: Wilson, Anastasia C. (2020) “Behavioral Economics In Context: Applications for Development, Inequality & Discrimination, Finance, and Environment.” An ECI Teaching Module on Social and Economic Issues, Economics in Context Initiative, Global Development Policy Center, Boston University, 2020. Students may also download the module directly from: http://www.bu.edu/eci/education-materials/teaching-modules/ Comments and feedback from course use are welcomed: Economics in Context Initiative Global Development Policy Center Boston University 53 Bay State Road Boston, MA 02215 http://www.bu.edu/eci/ Email: [email protected] NOTE – terms denoted in bold face are defined in the KEY TERMS AND CONCEPTS section at the end of the module. BEHAVIORAL ECONOMICS IN CONTEXT TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................ 4 1.1 The History and Development of Behavioral Economics .......................................................... 5 1.2 Behavioral Economics Toolkit: -
CAP 5636 - Advanced Artificial Intelligence
CAP 5636 - Advanced Artificial Intelligence Introduction This slide-deck is adapted from the one used by Chelsea Finn at CS221 at Stanford. CAP 5636 Instructor: Lotzi Bölöni http://www.cs.ucf.edu/~lboloni/ Slides, homeworks, links etc: http://www.cs.ucf.edu/~lboloni/Teaching/CAP5636_Fall2021/index.html Class hours: Tue, Th 12:00PM - 1:15PM COVID considerations: UCF expects you to get vaccinated and wear a mask Classes will be in-person, but will be recorded on Zoom. Office hours will be over Zoom. Motivating artificial intelligence It is generally not hard to motivate AI these days. There have been some substantial success stories. A lot of the triumphs have been in games, such as Jeopardy! (IBM Watson, 2011), Go (DeepMind’s AlphaGo, 2016), Dota 2 (OpenAI, 2019), Poker (CMU and Facebook, 2019). On non-game tasks, we also have systems that achieve strong performance on reading comprehension, speech recognition, face recognition, and medical imaging benchmarks. Unlike games, however, where the game is the full problem, good performance on a benchmark does not necessarily translate to good performance on the actual task in the wild. Just because you ace an exam doesn’t necessarily mean you have perfect understanding or know how to apply that knowledge to real problems. So, while promising, not all of these results translate to real-world applications Dangers of AI From the non-scientific community, we also see speculation about the future: that it will bring about sweeping societal change due to automation, resulting in massive job loss, not unlike the industrial revolution, or that AI could even surpass human-level intelligence and seek to take control. -
The Problems with Problem Solving: Reflections on the Rise, Current Status, and Possible Future of a Cognitive Research Paradigm1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Purdue E-Pubs The Problems with Problem Solving: Reflections on the Rise, Current Status, and Possible Future of a Cognitive Research Paradigm1 Stellan Ohlssoni Abstract The research paradigm invented by Allen Newell and Herbert A. Simon in the late 1950s dominated the study of problem solving for more than three decades. But in the early 1990s, problem solving ceased to drive research on complex cognition. As part of this decline, Newell and Simon’s most innovative research practices – especially their method for inducing subjects’ strategies from verbal protocols - were abandoned. In this essay, I summarize Newell and Simon’s theoretical and methodological innovations and explain why their strategy identification method did not become a standard research tool. I argue that the method lacked a systematic way to aggregate data, and that Newell and Simon’s search for general problem solving strategies failed. Paradoxically, the theoretical vision that led them to search elsewhere for general principles led researchers away from stud- ’ ies of complex problem solving. Newell and Simon’s main enduring contribution is the theory that people solve problems via heuristic search through a problem space. This theory remains the centerpiece of our understanding of how people solve unfamiliar problems, but it is seriously incomplete. In the early 1970s, Newell and Simon suggested that the field should focus on the question where problem spaces and search strategies come from. I propose a breakdown of this overarching question into five specific research questions. Principled answers to those questions would expand the theory of heuristic search into a more complete theory of human problem solving.