University of Navarra Ecclesiastical Faculty of Philosophy

Total Page:16

File Type:pdf, Size:1020Kb

University of Navarra Ecclesiastical Faculty of Philosophy UNIVERSITY OF NAVARRA ECCLESIASTICAL FACULTY OF PHILOSOPHY Mark Telford Georges THE PROBLEM OF STORING COMMON SENSE IN ARTIFICIAL INTELLIGENCE Context in CYC Doctoral dissertation directed by Dr. Jaime Nubiola Pamplona, 2000 1 Table of Contents ABBREVIATIONS ............................................................................................................................. 4 INTRODUCTION............................................................................................................................... 5 CHAPTER I: A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE .................................. 9 1.1. THE ORIGIN AND USE OF THE TERM “ARTIFICIAL INTELLIGENCE”.............................................. 9 1.1.1. Influences in AI................................................................................................................ 10 1.1.2. “Artificial Intelligence” in popular culture..................................................................... 11 1.1.3. “Artificial Intelligence” in Applied AI ............................................................................ 12 1.1.4. Human AI and alien AI....................................................................................................14 1.1.5. “Artificial Intelligence” in Cognitive Science................................................................. 16 1.2. TRENDS IN AI........................................................................................................................... 17 1.2.1. Classical AI ..................................................................................................................... 17 1.2.2. Connectionism ................................................................................................................. 19 1.2.3. Situated robotics.............................................................................................................. 23 1.3. THE PHILOSOPHY OF AI............................................................................................................ 25 1.3.1. Criteria for intelligence ................................................................................................... 25 1.3.2. Hypotheses about intelligence ......................................................................................... 27 1.3.3. The meaning of “thinking things” ................................................................................... 31 1.4. HOW AI HAS FARED AND THE NEED FOR KNOWLEDGE ............................................................. 35 1.4.1. How AI has fared............................................................................................................. 36 1.4.2. The need for knowledge...................................................................................................39 1.5. THE PROBLEM OF STORING COMMON SENSE............................................................................. 41 CHAPTER II: THE CYC EXPERIMENT..................................................................................... 45 2.1. DOUGLAS LENAT, THE CYC PROJECT LEADER ........................................................................ 46 2.2. CYC METHODOLOGY............................................................................................................... 48 2.3. CYC THEORY OF INTELLIGENCE .............................................................................................. 49 2.3.1. The Knowledge Principle ................................................................................................ 49 2.3.2. The Explicit Knowledge Principle................................................................................... 51 2.3.3. Overcoming brittleness.................................................................................................... 52 2.3.4. Coping with novelty: The Breadth Hypothesis ................................................................ 53 2.4. THE UPPER CYC ONTOLOGY.................................................................................................... 57 2.4.1. Basic concepts ................................................................................................................. 59 2.4.2. CYC fundamental vocabulary.......................................................................................... 61 2.4.3. CYC top level vocabulary................................................................................................ 61 2.5. HOW CYC HAS PROGRESSED ................................................................................................... 68 2.5.1. The three stages of CYC development ............................................................................. 68 2 2.5.2. The early years of CYC.................................................................................................... 70 2.5.3. Reworking the representation language.......................................................................... 71 2.5.4. Three important lessons................................................................................................... 72 2.5.5. Applications of CYC ........................................................................................................ 74 2.5.6. CYC today........................................................................................................................ 76 CHAPTER III: CONTEXT IN CYC .............................................................................................. 78 3.1. THE PROBLEM OF CONTEXT IN STORING COMMON SENSE ......................................................... 78 3.1.1. Incorporating context in CYC.......................................................................................... 79 3.1.2. Shortcomings in the original strategy.............................................................................. 81 3.2. RETHINKING CONTEXT............................................................................................................. 85 3.2.1. The elements of shared context........................................................................................ 85 3.2.2. Dimensionalizing context space ...................................................................................... 88 3.3. THE TOP 12 DIMENSIONS OF CONTEXT-SPACE .......................................................................... 91 3.3.1. Dimensions for time and space........................................................................................ 93 3.3.2. Eight other useful dimensions........................................................................................ 103 3.4. CONTEXT SPECIFICATION AND INFERENCE IN THE NEW STRATEGY......................................... 111 CHAPTER IV: PRINCIPLES, STRENGTHS AND WEAKNESSES IN CYC ....................... 114 4.1. CYC METHODOLOGY: PRINCIPLES, STRENGTHS AND WEAKNESSES....................................... 114 4.1.1. The underlying principles of EH.................................................................................... 115 4.1.2. CYC’s methodological strengths ................................................................................... 121 4.1.3. CYC’s methodological weaknesses................................................................................ 121 4.2. CYC THEORY OF INTELLIGENCE: PRINCIPLES, STRENGTHS AND WEAKNESSES ...................... 123 4.2.1. Underlying principles in CYC theory ............................................................................ 124 4.2.2. CYC’s theoretical strengths........................................................................................... 128 4.2.3. CYC’s theoretical weaknesses ....................................................................................... 129 4.3. CONTEXT IN CYC: PRINCIPLES, STRENGTHS AND WEAKNESSES............................................. 130 4.3.1. Underlying principles of context representation in CYC............................................... 131 4.3.2. Strengths of context representation in CYC................................................................... 134 4.3.3. Weaknesses of context representation in CYC............................................................... 135 4.4. THE VALIDITY OF PHILOSOPHICAL EVALUATION IN AI ........................................................... 139 CONCLUSIONS ............................................................................................................................. 141 BIBLIOGRAPHY ........................................................................................................................... 148 WORKS BY DOUGLAS LENAT AND HIS ASSOCIATES ...................................................................... 148 GENERAL BIBLIOGRAPHY.............................................................................................................. 149 3 Abbreviations AAAI American Association for Artificial Intelligence ACM Association of Computing Machines AI Artificial Intelligence ASR Automatic Speach Recognition CBR Case Based Reasoning CYC The name comes from en-CYC-lopedia DCS D. B. Lenat, “The Dimensions of Context Space”, Austin, TX: Cycorp, 1998. EH The Empirical Inquiry Hypothesis KB Knowledge Base NLU Natural Language Understanding OTK D. B. Lenat and E. A. Feigenbaum, 1991, “On the Thresholds of Knowledge”, Artificial Intelligence 47: 185-250. PDP Parallel Distributed Processing 4 Introduction Does computer science have anything to do with philosophy? As a computer scientist myself
Recommended publications
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • Iaj 10-3 (2019)
    Vol. 10 No. 3 2019 Arthur D. Simons Center for Interagency Cooperation, Fort Leavenworth, Kansas FEATURES | 1 About The Simons Center The Arthur D. Simons Center for Interagency Cooperation is a major program of the Command and General Staff College Foundation, Inc. The Simons Center is committed to the development of military leaders with interagency operational skills and an interagency body of knowledge that facilitates broader and more effective cooperation and policy implementation. About the CGSC Foundation The Command and General Staff College Foundation, Inc., was established on December 28, 2005 as a tax-exempt, non-profit educational foundation that provides resources and support to the U.S. Army Command and General Staff College in the development of tomorrow’s military leaders. The CGSC Foundation helps to advance the profession of military art and science by promoting the welfare and enhancing the prestigious educational programs of the CGSC. The CGSC Foundation supports the College’s many areas of focus by providing financial and research support for major programs such as the Simons Center, symposia, conferences, and lectures, as well as funding and organizing community outreach activities that help connect the American public to their Army. All Simons Center works are published by the “CGSC Foundation Press.” The CGSC Foundation is an equal opportunity provider. InterAgency Journal FEATURES Vol. 10, No. 3 (2019) 4 In the beginning... Special Report by Robert Ulin Arthur D. Simons Center for Interagency Cooperation 7 Military Neuro-Interventions: The Lewis and Clark Center Solving the Right Problems for Ethical Outcomes 100 Stimson Ave., Suite 1149 Shannon E.
    [Show full text]
  • Udc 004.838.2 Irsti 20.19.21 Comparative Analysis Of
    Comparative analysis of knowledge bases: ConceptNet vs CYC A. Y. Nuraliyeva, S. S. Daukishov, R.T. Nassyrova UDC 004.838.2 IRSTI 20.19.21 COMPARATIVE ANALYSIS OF KNOWLEDGE BASES: CONCEPTNET VS CYC A. Y. Nuraliyeva1, S. S. Daukishov2, R.T. Nassyrova3 1,2Kazakh-British Technical University, Almaty, Kazakhstan 3IT Analyst, Philip Morris Kazakhstan, Almaty, Kazakhstan [email protected], ORCID 0000-0001-6451-3743 [email protected], ORCID 0000-0002-3784-4456 [email protected], ORCID 0000-0002-7968-3195 Abstract. Data summarization, question answering, text categorization are some of the tasks knowledge bases are used for. A knowledge base (KB) is a computerized compilation of information about the world. They can be useful for complex tasks and problems in NLP and they comprise both entities and relations. We performed an analytical comparison of two knowledge bases which capture a wide variety of common-sense information - ConceptNet and Cyc. Manually curated knowledge base Cyc has invested more than 1,000 man-years over the last two decades building a knowledge base that is meant to capture a wide range of common-sense skills. On the other hand, ConceptNet is a free multilingual knowledge base and crowdsourced knowledge initiative that uses a large number of links to connect commonplace items. When looking for common sense logic and answers to questions, ConceptNet is a great place to start. In this research, two well-known knowledge bases were reviewed - ConceptNet and Cyc - their origin, differences, applications, benefits and disadvantages were covered. The authors hope this paper would be useful for researchers looking for more appropriate knowledge bases for word embedding, word sense disambiguation and natural-language communication.
    [Show full text]
  • November 15, 2019, NIH Record, Vol. LXXI, No. 23
    November 15, 2019 Vol. LXXI, No. 23 with a brain-controlled robotic exoskeleton who had been paralyzed for 9 years, “didn’t say, ‘I kicked the ball!’” said Nicolelis. More CLINICAL PROMISE SHOWN importantly, he said, “I felt the ball!” It took a team of 156 scientists from Nicolelis Outlines Progress in 25 countries on 5 continents to reach this Brain-Machine Interfaces moment for which neuroscientist Nicolelis BY RICH MCMANUS had been preparing for 20 years. He recruited the team by dangling field tickets to There is probably no other scientist in the World Cup in front of potential recruits. the world for whom peer review meant “It was a hard way to win a free ticket having his experiment succeed in front of a to the game, but that is the Brazilian way,” stadium full of 75,000 screaming Brazilians, quipped Nicolelis, a native of that country. with another 1.2 billion people watching on Now a professor of neuroscience at live television. Duke University School of Medicine, But at the start of the 2014 World Cup at Nicolelis, who won an NIH Pioneer Award Corinthians Arena in Sao Paulo, Dr. Miguel in 2010 for work he said couldn’t earn a Nicolelis witnessed his patient Juliano Pinto, penny of funding a decade earlier, spoke a paraplegic, not only kick a soccer ball to Oct. 16 at an NIH Director’s Lecture in start the tournament, but also “feel” his foot Masur Auditorium. striking the ball. In the late 1980s, Nicolelis, who has been Duke’s Dr. Miguel Nicolelis discusses his research on brain-machine interfaces.
    [Show full text]
  • An Investigation of the Search Space of Lenat's AM Program Redacted for Privacy Abstract Approved: Thomas G
    AN ABSTRACT OF THE THESIS OF Prafulla K. Mishra for the degree of Master of Sciencein Computer Science presented on March 10,1988. Title: An Investigation of the Search Space of Lenat's AM Program Redacted for Privacy Abstract approved:_ Thomas G. Dietterich. AM is a computer program written by Doug Lenat that discoverselementary mathematics starting from some initial knowledge of set theory. Thesuccess of this program is not clearly understood. This work is an attempt to explore the searchspace of AM in order to un- derstand the success and eventual failure of AM. We show thatoperators play an important role in AM. Operators of AMcan be divided into critical and unneces- sary. The critical operators can be further divided into implosive and explosive. Heuristics are needed only for the explosive operators. Most heuristics and operators in AM can be removed without significant ef- fects. Only three operators (Coalesce, Invert, Repeat) andone initial concept (Bag Union) are enough to discover most of the elementary math concepts that AM discovered. An Investigation of the Search Space of Lenat's AM Program By Prafulla K. Mishra A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed March 10, 1988 Commencement June 1988 APPROVED: Redacted for Privacy Professor of Computer Science in charge of major Redacted for Privacy Head of Department of Computer Science Redacted for Privacy Dean of GradtiaUe School Date thesis presented March 10, 1988 Typed by Prafulla K. Mishra for Prafulla K. Mishra ACKNOWLEDGEMENTS I am indebted to Tom Dietterich for his help, guidanceand encouragement throughout this work.
    [Show full text]
  • Arxiv:1404.7828V4 [Cs.NE] 8 Oct 2014 to Those Who Contributed to the Present State of the Art
    Deep Learning in Neural Networks: An Overview Technical Report IDSIA-03-14 / arXiv:1404.7828 v4 [cs.NE] (88 pages, 888 references) Jurgen¨ Schmidhuber The Swiss AI Lab IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Artificiale University of Lugano & SUPSI Galleria 2, 6928 Manno-Lugano Switzerland 8 October 2014 Abstract In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distin- guished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. LATEX source: http://www.idsia.ch/˜juergen/DeepLearning8Oct2014.tex Complete BIBTEX file (888 kB): http://www.idsia.ch/˜juergen/deep.bib Preface This is the preprint of an invited Deep Learning (DL) overview. One of its goals is to assign credit arXiv:1404.7828v4 [cs.NE] 8 Oct 2014 to those who contributed to the present state of the art. I acknowledge the limitations of attempting to achieve this goal. The DL research community itself may be viewed as a continually evolving, deep network of scientists who have influenced each other in complex ways. Starting from recent DL results, I tried to trace back the origins of relevant ideas through the past half century and beyond, sometimes using “local search” to follow citations of citations backwards in time.
    [Show full text]
  • Computational Creativity: Three Generations of Research and Beyond
    Computational Creativity: Three Generations of Research and Beyond Debasis Mitra Department of Computer Science Florida Institute of Technology [email protected] Abstract In this article we have classified computational creativity research activities into three generations. Although the 2. Philosophical Angles respective system developers were not necessarily targeting Philosophers try to understand creativity from the their research for computational creativity, we consider their works as contribution to this emerging field. Possibly, the historical perspectives – how different acts of creativity first recognition of the implication of intelligent systems (primarily in science) might have happened. Historical toward the creativity came with an AAAI Spring investigation of the process involved in scientific discovery Symposium on AI and Creativity (Dartnall and Kim, 1993). relied heavily on philosophical viewpoints. Within We have here tried to chart the progress of the field by philosophy there is an ongoing old debate regarding describing some sample projects. Our hope is that this whether the process of scientific discovery has a normative article will provide some direction to the interested basis. Within the computing community this question researchers and help creating a vision for the community. transpires in asking if analyzing and computationally emulating creativity is feasible or not. In order to answer this question artificial intelligence (AI) researchers have 1. Introduction tried to develop computing systems to mimic scientific One of the meanings of the word “create” is “to produce by discovery processes (e.g., BACON, KEKADA, etc. that we imaginative skill” and that of the word “creativity” is “the will discuss), almost since the beginning of the inception of ability to create,’ according to the Webster Dictionary.
    [Show full text]
  • Evolution of Complexity in Real-World Domains
    Evolution of Complexity in Real-World Domains A Dissertation Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Computer Science Jordan B. Pollack, Advisor In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by Pablo Funes May, 2001 This dissertation, directed and approved by Pablo Funes’s committee, has been accepted and approved by the Graduate Faculty of Brandeis University in partial fulfillment of the requirements for the degree of: DOCTOR OF PHILOSOPHY Dean of Arts and Sciences Dissertation Committee: Jordan B. Pollack, Dept. of Computer Science, Chair. Martin Cohn, Dept. of Computer Science Timothy J. Hickey, Dept. of Computer Science Dario Floreano, ISR, École Polytechnique Fédérale de Lausanne c Copyright by Pablo Funes 2001 in memoriam Everé Santiago Funes (1913-2000) vii Acknowledgments Elizabeth Sklar collaborated on the work on coevolving behavior with live creatures (chapter 3). Hugues Juillé collaborated with the Tron GP architecture (section 3.3.3) and the nov- elty engine (section 3.3.7). Louis Lapat collaborated on EvoCAD (section 2.9). Thanks to Jordan Pollack for the continuing support and for being there when it really matters. Thanks to Betsy Sklar, my true American friend. And to Richard Watson for the love and the focus on the real science. Also to all the people who contributed in one way or another, in no particular order: José Castaño, Adriana Villella, Edwin De Jong, Barry Werger, Ofer Melnik, Isabel Ennes, Sevan Ficici, Myrna Fox, Miguel Schneider, Maja Mataric, Martin Cohn, Aroldo Kaplan, Otilia Vainstok. And mainly to my family and friends, among them: María Argüello, Santiago Funes, Soledad Funes, Carmen Argüello, María Josefa González, Faustino Jorge, Martín Leven- son, Inés Armendariz, Enrique Pujals, Carlos Brody, Ernesto Dal Bo, Martín Galli, Marcelo Oglietti.
    [Show full text]
  • Automated Theory Formation in Mathematics1 1
    AUTOMATED THEORY FORMATION IN MATHEMATICS1 Douglas B. Lenat Computer Science Department Carnegie-Mellon University Pittsburgh, Pa. 15213 Abstract of fully automatic theory formation in some scientific field. "1 his includes two activities: (i) discovering relationships A program called "AM" is described which cairies on simple among known concepts (e.g., by formal manipulations, or by mathematics research: defining, and studying new concepts noticing regularities in empirical data), and (ii) defining new under the guidance of a large body of heuiistic rules. The concepts for investigation. Meta-Dendral [Buchanan 75] 250 heurKtus communicate via an agenda mechanism, a performs only the first of these; most domain-independent global priority queue of small bisk', for the program to concept learning programs (Winston 70] perform only the pei foim and teasons why each task is plausible (e.g., "Find latter of these: while they do create new concepts, the PENCRAHZTION. of 'prnes', because turued out to be initiative is not theirs but rather is that of a human so useful a Conccpi"). Fach concept is an active, structured "teacher" who already has the concepts in mind. knowledge module. One bundled vei y incomplete modules are initially supplied, each one corresponding to an What we are describing is a computet program which elementary set theoretic concept (e.g., union). This defines new concepts, investigates them, notices provides a definite but immense space which AM begins to regularities in the data about them, and conjectures explore. In one boor, AM rediscovers hundreds of common relationships between them. This new information is used concepts (including singleton sets, natural numbers, by the program to evaluate the newly-defined concepts, arithmetic) and theorems (e.g., unique factorization).
    [Show full text]
  • QKSA: Quantum Knowledge Seeking Agent
    QKSA: Quantum Knowledge Seeking Agent motivation, core thesis and baseline framework Aritra Sarkar Department of Quantum & Computer Engineering, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands 1 Introduction In this article we present the motivation and the core thesis towards the implementation of a Quantum Knowledge Seeking Agent (QKSA). QKSA is a general reinforcement learning agent that can be used to model classical and quantum dynamics. It merges ideas from universal artificial general intelligence, con- structor theory and genetic programming to build a robust and general framework for testing the capabilities of the agent in a variety of environments. It takes the artificial life (or, animat) path to artificial general intelligence where a population of intelligent agents are instantiated to explore valid ways of modeling the perceptions. The multiplicity and survivability of the agents are defined by the fitness, with respect to the explainability and predictability, of a resource-bounded computational model of the environment. This general learning approach is then employed to model the physics of an environment based on subjective ob- server states of the agents. A specific case of quantum process tomography as a general modeling principle is presented. The various background ideas and a baseline formalism is discussed in this article which sets the groundwork for the implementations of the QKSA that are currently in active development. Section 2 presents a historic overview of the motivation behind this research In Section 3 we survey some general reinforcement learning models and bio-inspired computing techniques that forms a baseline for the design of the QKSA.
    [Show full text]
  • A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems
    Computer Science Department June 1990 GENETIC PROGRAMMING: A PARADIGM FOR GENETICALLY BREEDING POPULATIONS OF COMPUTER PROGRAMS TO SOLVE PROBLEMS John R. Koza ([email protected]) Computer Science Department Stanford University Margaret Jacks Hall Stanford, CA 94305 TABLE OF CONTENTS 1............ INTRODUCTION AND OVERVIEW 1 1.1. ........EXAMPLES OF PROBLEMS REQUIRING DISCOVERY OF A COMPUTER PROGRAM 1 1.2. ........SOLVING PROBLEMS REQUIRING DISCOVERY OF A COMPUTER PROGRAM 3 2............ BACKGROUND ON GENETIC ALGORITHMS 6 3............ THE ÒGENETIC PROGRAMMINGÓ PARADIGM 8 3.1. ........THE STRUCTURES UNDERGOING ADAPTATION 8 3.2. ........THE SEARCH SPACE 10 3.3. ........THE INITIAL STRUCTURES 10 3.4. ........THE FITNESS FUNCTION 10 3.5. ........THE OPERATIONS THAT MODIFY THE STRUCTURES 11 3.5.1....... THE FITNESS PROPORTIONATE REPRODUCTION OPERATION 11 3.5.2....... THE CROSSOVER (RECOMBINATION) OPERATION 12 3.6. ........THE STATE OF THE SYSTEM 13 3.7. ........IDENTIFYING THE RESULTS AND TERMINATING THE ALGORITHM 14 3.8. ........THE PARAMETERS THAT CONTROL THE ALGORITHM 14 4............ EXPERIMENTAL RESULTS 16 4.1. ........MACHINE LEARNING OF A FUNCTION 16 4.1.1....... BOOLEAN 11-MULTIPLEXER FUNCTION 16 4.1.2 ......THE BOOLEAN 6-MULTIPLEXER AND 3-MULTIPLEXER FUNCTIONS 24 4.1.3 ......NON-RANDOMNESS OF THESE RESULTS 24 4.2. ........PLANNING 27 4.2.1. .....BLOCK STACKING 27 4.2.2. .....CORRECTLY STACKING BLOCKS 29 4.2.3....... EFFICIENTLY STACKING BLOCKS 31 4.2.4. .....A PARSIMONIOUS EXPRESSION FOR STACKING BLOCKS 32 4.2.5. .....ARTIFICIAL ANT - TRAVERSING THE JOHN MUIR TRAIL 33 4.3. ........SYMBOLIC FUNCTION IDENTIFICATION 35 4.3.1....... SEQUENCE INDUCTION 35 4.3.1.1...
    [Show full text]
  • Artificial Intelligence an Unfair Review of Margaret Boden's the Creative
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Artificial Intelligence ELSEVIER Artificial Intelligence 79 (1995) 97-109 Book Review An unfair review of Margaret Boden’s The Creative Mind* from the perspective of creative systems David Perkins Project Zero, Harvard Graduate School of Education, Cambridge, MA 02138, USA Changing the rules of the game is often unsettling, but it can be fruitful. Consider for instance the tale of Alexander the Great and the Gordian knot. According to Greek legend, the knot itself was an intricate tangle tied by Gordius, king of Phrygia. An oracle forecast that whosoever could undo the Gordian knot would rule all of Asia. Alexander wanted that prophecy working for him. Not one to hover over niceties, he drew his sword and cut it through, thus “untying” the knot. Alexander’s move both impresses and annoys. It impresses with its decisiveness of action and its creativity. It annoys because Alexander changed the tacit rules. To cut the knot through is not what one would imagine undoing the knot should amount to. It’s unfair! All this connects in a couple of ways to Margaret Boden’s 1991 book The Creative Mind. First of all, in her exploration of creative thought, Boden addresses the key question: What really makes the difference between genuinely creative thought and not-so-creative, albeit effective, thought? At the heart of her answer lies the idea of changing the rules. Often, highly productive thinking occurs within the boundaries of established tacit or explicit rule systems.
    [Show full text]