Assessing Climate-Change-Induced Flood Risk in the Conasauga River

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Climate-Change-Induced Flood Risk in the Conasauga River Nat. Hazards Earth Syst. Sci., 21, 1739–1757, 2021 https://doi.org/10.5194/nhess-21-1739-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling Tigstu T. Dullo1, George K. Darkwah1, Sudershan Gangrade2,3, Mario Morales-Hernández3,4, M. Bulbul Sharif5, Alfred J. Kalyanapu1, Shih-Chieh Kao2,3, Sheikh Ghafoor5, and Moetasim Ashfaq3,4 1Department of Civil and Environmental Engineering, Tennessee Technological University, Cookeville, TN 38505, USA 2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 3Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 4Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 5Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505, USA Correspondence: Alfred J. Kalyanapu ([email protected]) Received: 13 October 2020 – Discussion started: 20 October 2020 Revised: 7 April 2021 – Accepted: 18 April 2021 – Published: 2 June 2021 Abstract. This study evaluates the impact of potential future Copyright statement. This paper has been authored by UT-Battelle, climate change on flood regimes, floodplain protection, and LLC, under contract DE-AC05-00OR22725 with the US Depart- electricity infrastructures across the Conasauga River wa- ment of Energy (DOE). The US government retains and the pub- tershed in the southeastern United States through ensemble lisher, by accepting the article for publication, acknowledges that hydrodynamic inundation modeling. The ensemble stream- the US government retains a nonexclusive, paid-up, irrevocable, flow scenarios were simulated by the Distributed Hydrol- worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for US government purposes. ogy Soil Vegetation Model (DHSVM) driven by (1) 1981– DOE will provide public access to these results of federally spon- 2012 Daymet meteorological observations and (2) 11 sets sored research in accordance with the DOE Public Access Plan of downscaled global climate models (GCMs) during the (http://energy.gov/downloads/doe-public-access-plan). 1966–2005 historical and 2011–2050 future periods. Sur- face inundation was simulated using a GPU-accelerated Two-dimensional Runoff Inundation Toolkit for Operational 1 Introduction Needs (TRITON) hydrodynamic model. A total of 9 out of the 11 GCMs exhibit an increase in the mean ensemble flood Floods are costly disasters that affect more people than any inundation areas. Moreover, at the 1 % annual exceedance other natural hazard around the world (UNISDR, 2015). Ma- probability level, the flood inundation frequency curves indi- jor factors that can exacerbate flood damage include popu- cate a ∼ 16 km2 increase in floodplain area. The assessment lation growth, urbanization, and climate change (Birhanu et also shows that even after flood-proofing, four of the sub- al., 2016; Winsemius et al., 2016; Alfieri et al., 2017, 2018; stations could still be affected in the projected future period. Kefi et al., 2018). Recent observations exhibit an increase The increase in floodplain area and substation vulnerability in the frequency and the intensity of extreme precipitation highlights the need to account for climate change in flood- events (Pachauri and Meyer, 2014), which have strengthened plain management. Overall, this study provides a proof-of- the magnitude and frequency of flooding (Milly et al., 2002; concept demonstration of how the computationally intensive Langerwisch et al., 2013; Alfieri et al., 2015a, 2018; Mora et hydrodynamic inundation modeling can be used to enhance al., 2018). As a result, the damage and cost of flooding have flood frequency maps and vulnerability assessment under the substantially increased across the United States (US) (Pielke changing climatic conditions. and Downton, 2000; Pielke et al., 2002; Ntelekos et al., 2010; Wing et al., 2018) and the rest of the world (Hirabayashi Published by Copernicus Publications on behalf of the European Geosciences Union. 1740 T. T. Dullo et al.: Assessing climate-change-induced flood risk in the Conasauga River watershed et al., 2013; Arnell and Gosling, 2014; Alfieri et al., 2015b, magnitude of PMF (AEP < 10−4 %), the findings cannot be 2017; Kefi et al., 2018). directly associated with more frequent and moderate flood Since 1968, the National Flood Insurance Program events (i.e., AEP around 1 %–0.2 %) that are the main focus (NFIP), administered by the Federal Emergency Manage- of many engineering applications. Although some of these ment Agency (FEMA), has implemented floodplain regu- studies focused on evaluating the resilience of electricity lation standards in the US to mitigate the escalating flood infrastructures against flood hazard and/or climate change, losses (Bedient et al., 2013). For communities participating only a few of them evaluated site-specific inundation risk in the NFIP, flood insurance is required for structures located and quantified impacts of climate-change-induced flooding within the 1 % annual exceedance probability (AEP) flood on electricity infrastructures under different future climate zone (i.e., areas with probability of flooding ≥ 1 % in any scenarios. Again, one main challenge is associated with the given year; FEMA, 2002). However, existing floodplain pro- high computational costs to effectively transform ensemble tection standards have proven to be inadequate (Galloway et streamflow projections into ensemble surface inundation pro- al., 2006; Ntelekos et al., 2010; Tan, 2013; Blessing et al., jections through hydrodynamic models. With the enhanced 2017; HCFCD, 2018), and climate change can likely exacer- inundation models and high-performance computing (HPC) bate these issues (Olsen, 2006; Ntelekos et al., 2010; Kollat capabilities (Morales-Hernández et al., 2020), this challenge et al., 2012; AECOM, 2013; Wobus et al., 2017; Nyaupane can be gradually overcome for more spatially explicit flood et al., 2018; Pralle, 2019). For instance, the streamflow AEP vulnerability assessment. thresholds and synthetic hydrographs used to simulate the The objective of this study is to demonstrate the applicabil- flood zones were derived purely based on historic observa- ity of a computationally intensive ensemble inundation mod- tions that may underestimate the intensified hydrologic ex- eling approach to better understand how climate change may tremes in the projected future climatic conditions. Although affect flood regimes, floodplain regulation standards, and the the possible change of future streamflow AEP thresholds vulnerability of existing infrastructures. Extending from the may be evaluated by an ensemble of hydrologic model out- framework developed by Gangrade et al. (2019) for PMF- puts driven by multiple downscaled and bias-corrected cli- scale events (AEP < 10−4 %) based on one selected climate mate models (e.g., Wobus et al., 2017), the extension from model (CCSM4), we focus on more frequent extreme stream- maximum streamflow to maximum flood zone is not trivial flow events (i.e., AEP around 1 %–0.2 %), which requires and cannot be explicitly addressed through the conventional different modeling strategies based on multiple downscaled deterministic inundation modeling approach. climate models. The unique aspects of this study are the The increases in the magnitude and frequency of flood- application of an integrated climate–hydrologic–hydraulic ing, in addition to the inadequacy of floodplain measures and modeling framework for the following. the high costs of hardening (Wilbanks et al., 2008; Farber- 1. The framework will evaluate the changes in flood DeAnda et al., 2010; Gilstrap et al., 2015), have put elec- regime using high-resolution ensemble flood inundation tricity infrastructures at risk (Zamuda et al., 2015; Zamuda maps. The ensemble-based approach is able to incor- and Lippert, 2016; Cronin et al., 2018; Forzieri et al., 2018; porate the large hydrologic interannual variability and Mikellidou et al., 2018; Allen-Dumas et al., 2019). In par- model uncertainty that cannot be captured through the ticular, electricity infrastructures which lie in areas vulnera- conventional deterministic flood map. ble to flooding can experience floodwater damages that may lead to changes in their energy production and consumption 2. The framework will enable direct frequency analysis (Chandramowli and Felder, 2014; Ciscar and Dowling, 2014; of ensemble flood inundation maps that correspond to Bollinger and Dijkema, 2016; Gangrade et al., 2019). For in- historic and projected future climate conditions. This stance, flooding can rust metals, destroy insulation, and dam- approach provides an alternative floodplain delineation age interruption capacity (Farber-DeAnda et al., 2010; Vale, technique to the conventional approach, in which a sin- 2014; NERC, 2018; Bragatto et al., 2019). It is estimated that gle deterministic design flood value is used to develop a nearly 300 energy facilities are located on low-lying lands flood map with a given exceedance probability. vulnerable to sea-level rise and flooding in the lower 48 US 3. The framework will evaluate the vulnerability of elec- states (Strauss and Ziemlinski, 2012). tricity infrastructures to climate-change-induced flood- Several studies have assessed the vulnerability of elec- ing and assess the adequacy of existing flood protec-
Recommended publications
  • Stream-Temperature Characteristics in Georgia
    STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 . 51 iii ILLUSTRATIONS Page Figure 1. Map showing locations of 198 periodic and 22 daily stream-temperature stations, major river basins, and physiographic provinces in Georgia.
    [Show full text]
  • List of TMDL Implementation Plans with Tmdls Organized by Basin
    Latest 305(b)/303(d) List of Streams List of Stream Reaches With TMDLs and TMDL Implementation Plans - Updated June 2011 Total Maximum Daily Loadings TMDL TMDL PLAN DELIST BASIN NAME HUC10 REACH NAME LOCATION VIOLATIONS TMDL YEAR TMDL PLAN YEAR YEAR Altamaha 0307010601 Bullard Creek ~0.25 mi u/s Altamaha Road to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River FC 2012 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 2006 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River Bio F 2012 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Beards Creek Spring Branch to Altamaha River Bio F 2012 Altamaha 0307010603 Five Mile Creek Headwaters to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010603 Goose Creek U/S Rd. S1922(Walton Griffis Rd.) to Little Goose Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Mushmelon Creek Headwaters to Delbos Bay Bio F 2012 Altamaha 0307010604 Altamaha River Confluence of Oconee and Ocmulgee Rivers to ITT Rayonier
    [Show full text]
  • Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards
    Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards ( 1) Purpose. The establishment of water quality standards. (2) W ate r Quality Enhancement: (a) The purposes and intent of the State in establishing Water Quality Standards are to provide enhancement of water quality and prevention of pollution; to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses and to maintain and improve the biological integrity of the waters of the State. ( b) The following paragraphs describe the three tiers of the State's waters. (i) Tier 1 - Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. (ii) Tier 2 - Where the quality of the waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the division finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the division's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located.
    [Show full text]
  • Benefits of Water Trails
    National Park Service Rivers, Trails & Conservation Assistance Program Southeast Regional Office--Atlanta Recreation Conservation Low investment Revenue generators Georgia has a variety of water resources--lakes, rivers and the coast. Each offers a different kind of opportunity for healthy outdoor activity In the U.S., participation increased 117% from 1995-2005. Water trails provide recreational opportunities for all sizes and ages- -children, adults, seniors. Water quality & quantity Wildlife Land use Canoe trails make connections between land, water, riparian edges and wildlife habitats. Canoe trails create environmental stewards. They are a constituency that understands land use & watershed issues. Upstream issues = downstream problems. And paddle groups such as Georgia Canoe Association sponsor clean-ups of rivers. The economics of the trail implementation: Inexpensive relative to other recreation projects. Not as much land to buy or structures to build. Access facilities can be minimal and inexpensive. Existing public land and facilities on rivers, lakes and the coast. Revenue generation from the canoe trail: Increased spending in the local area. Existing businesses increase profits-- restaurants, outfitters, lodging . New businesses develop to support the trail. Purchases of gear & equipment increase and support business. Festivals and events around the trail support the local community. More value from local government support. Improve local community with higher quality of life & improved tax base. Altamaha River www.altmahariver.org trail starts near the end of the Ocmulgee river and goes to Darien. City of Canton—Greenway Master Plan (2000) includes blueway. Will become part of the Etowah River Blueway. Chattahoochee Canoe Trail –Upper section (proposed)—about 40 miles from Sautee Creek to Clarks Bridge at Lake Lanier.
    [Show full text]
  • GEORGIA TROUT FISHING REGULATIONS Trout Season Trout
    GEORGIA TROUT FISHING REGULATIONS Trout Season All designated trout waters are now open year round. Trout Fishing Hours • Fishing 24 hours a day is allowed on all trout streams and all impoundments on trout streams except those in the next paragraph. • Fishing hours on Dockery Lake, Rock Creek Lake, the Chattahoochee River from Buford Dam to Peachtree Creek, the Conasauga River watershed upstream of the Georgia-Tennessee state line and Smith Creek downstream of Unicoi dam are 30 minutes before sunrise until 30 minutes after sunset. Night fishing is not allowed. Trout Fishing Rules • Trout anglers are restricted to the use of one pole and line which must be hand held. No other type of gear may be used in trout streams. • It is unlawful to use live fish for bait in trout streams. Seining bait-fish is not allowed in any trout stream. Impoundments On Trout Streams Anglers can: • Fish for fish species other than trout without a trout license on Dockery and Rock Creek lakes. • Fish at night, except on Dockery and Rock Creek lakes. See Trout Fishing Hours for details. Impoundment notes: • If you fish for or possess trout, you must possess a trout license. If you catch a trout and do not possess a trout license you must release the trout immediately. • State park visitors are not required to have a trout license to fish in the impounded waters of the Park. However, those visitors wishing to harvest trout will need to have a trout license in their possession. Delayed Harvest Streams Anglers fishing delayed harvest streams must release all trout immediately and use and possess only artificial lures with one single hook per lure from Nov.
    [Show full text]
  • Fish Consumption Guidelines: Rivers & Creeks
    FRESHWATER FISH CONSUMPTION GUIDELINES: RIVERS & CREEKS NO RESTRICTIONS ONE MEAL PER WEEK ONE MEAL PER MONTH DO NOT EAT NO DATA Bass, LargemouthBass, Other Bass, Shoal Bass, Spotted Bass, Striped Bass, White Bass, Bluegill Bowfin Buffalo Bullhead Carp Catfish, Blue Catfish, Channel Catfish,Flathead Catfish, White Crappie StripedMullet, Perch, Yellow Chain Pickerel, Redbreast Redhorse Redear Sucker Green Sunfish, Sunfish, Other Brown Trout, Rainbow Trout, Alapaha River Alapahoochee River Allatoona Crk. (Cobb Co.) Altamaha River Altamaha River (below US Route 25) Apalachee River Beaver Crk. (Taylor Co.) Brier Crk. (Burke Co.) Canoochee River (Hwy 192 to Lotts Crk.) Canoochee River (Lotts Crk. to Ogeechee River) Casey Canal Chattahoochee River (Helen to Lk. Lanier) (Buford Dam to Morgan Falls Dam) (Morgan Falls Dam to Peachtree Crk.) * (Peachtree Crk. to Pea Crk.) * (Pea Crk. to West Point Lk., below Franklin) * (West Point dam to I-85) (Oliver Dam to Upatoi Crk.) Chattooga River (NE Georgia, Rabun County) Chestatee River (below Tesnatee Riv.) Chickamauga Crk. (West) Cohulla Crk. (Whitfield Co.) Conasauga River (below Stateline) <18" Coosa River <20" 18 –32" (River Mile Zero to Hwy 100, Floyd Co.) ≥20" >32" <18" Coosa River <20" 18 –32" (Hwy 100 to Stateline, Floyd Co.) ≥20" >32" Coosa River (Coosa, Etowah below <20" Thompson-Weinman dam, Oostanaula) ≥20" Coosawattee River (below Carters) Etowah River (Dawson Co.) Etowah River (above Lake Allatoona) Etowah River (below Lake Allatoona dam) Flint River (Spalding/Fayette Cos.) Flint River (Meriwether/Upson/Pike Cos.) Flint River (Taylor Co.) Flint River (Macon/Dooly/Worth/Lee Cos.) <16" Flint River (Dougherty/Baker Mitchell Cos.) 16–30" >30" Gum Crk.
    [Show full text]
  • Extreme Drought: Summary of Hydrologic Conditions in Georgia, 2012 the U.S
    Extreme Drought: Summary of Hydrologic Conditions in Georgia, 2012 The U.S. Geological Survey (USGS) Streamflow and Groundwater Data WYs 1999–2012 can be accessed online at Georgia Water Science Center (GaWSC) http://ga.water.usgs.gov/publications/pubswdr. maintains a long-term hydrologic monitoring Daily, monthly, and yearly streamflow html. A digital map at http://maps.waterdata. network of more than 330 real-time stream-­­ statistics from the 2012 USGS annual data usgs.gov allows the user to search for current gages, including 10 real-time lake-level report (ADR; U.S. Geological Survey, 2012a) and historical data and graphics collected as monitoring stations, 63 real-time water-quality were used to develop this summary. Data for part of the USGS monitoring network. monitors, and 48 water-quality sampling stations. Additionally, the GaWSC operates more than 180 groundwater monitoring wells, Quarterly Hydrologic Conditions in Georgia for 2012 WY, Based on Drainage Basin Runoff 42 of which are real-time. One of the many D. 07/01/12– EXPLANATION benefits from this monitoring network is that A. 10/01/11– B. 01/01/12– C. 04/01/12– 09/30/12 Percentile classes the data analyses provide a well distributed 12/31/11 03/30/12 06/30/12 Highest overview of the hydrologic conditions of creeks, Much above normal, >90 rivers, reservoirs, and aquifers in Georgia. Above normal, 76 to 90 Streamflow and groundwater data are GEORGIA Normal, 25 to 75 verified throughout the year by USGS hydro­ Below normal, 10 to 24 graphers, and this information is available to Much below normal <10 water-resource managers, recreationalists, and Lowest Federal, State, and local agencies.
    [Show full text]
  • Total Maximum Daily Load Evaluation for Fifty-Eight Stream Segments in the Coosa River Basin for Fecal Coliform
    Total Maximum Daily Load Evaluation for Fifty-Eight Stream Segments in the Coosa River Basin for Fecal Coliform Submitted to: The U.S. Environmental Protection Agency Region 4 Atlanta, Georgia Submitted by: The Georgia Department of Natural Resources Environmental Protection Division Atlanta, Georgia January 2004 Total Maximum Daily Load Evaluation January 2004 Coosa River Basin (Fecal coliform) Table of Contents Section Page EXECUTIVE SUMMARY ............................................................................................................. iv 1.0 INTRODUCTION ................................................................................................................... 1 1.1 Background ....................................................................................................................... 1 1.2 Watershed Description......................................................................................................1 1.3 Water Quality Standard.....................................................................................................9 2.0 WATER QUALITY ASSESSMENT ...................................................................................... 15 3.0 SOURCE ASSESSMENT .................................................................................................... 16 3.1 Point Source Assessment ............................................................................................... 16 3.2 Nonpoint Source Assessment........................................................................................
    [Show full text]
  • Mississippi Period Archaeology of the Georgia Valley and Ridge Province
    UNIVERSITY OF GEORGIA Laboratory of Archaeology Series Report No. 25 Georgia Archaeological Research Design Paper, No. 4 MISSISSIPPI PERIOD ARCHAEOLOGY OF THE GEORGIA VALLEY AND RIDGE PROVINCE By David J. Hally Department of Anthropology University of Georgia and James B. Langford, Jr. The Coosawattee Foundation 1988 Reprinted, 1995 For John Wear, energetic pioneer in the archaeology of northwest Georgia TABLE OF CONTENTS FIGJRFS. • • . • . • . • • • • • . • . • • • • . • • . • . • . • . • . • . • • . • . • vi TABLES. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• vii .ACID\1~~ • ••••••••••••••••••••••••••••••••••••••••••••••• • viii INTRODUcrION ••••••••••• 1 THE VALLEY MlD RIDGE PROVINCE 2 PREVIOUS ARCHAEDLOGICAL RESEARCH IN THE VALLEY AND RIDGE PROVINCE •••••••••••••••••.••••••••• 13 PREHISTORIC OVERVIEW ••••••••••• 22 EARLY MISSISSIPPI PERIOD {A.D. 900-1200) •••••••• 41 MIDDLE tlISSISSIPPI PERIOD {A.D. 1200-1350) •••••••••• 55 LATE MISSISSIPPI PERIOD (A.D. 1350-1540) •••••••••••• 67 HESOURCE MANAGEMENT CONSIDERATIONS 82 THE CULTURAL RESOURCES 82 RESEARCH PROBLEMS IN VALLEY AND RIJ::x:;E PROVINCE I~SSISSIPPIAN ARCHAIDLOGY ••••••••••••••••••••••••••• 86 RESOURCE SIGf.\!IFICANCE 92 PRESERVING ARCHAIDLOGICAL RESOURCES 93 APPENDIX: PUBLISHED SOURCES FOR TYPE DESCRIPTIONS 98 REV"I:E'VV C~S AND REPLy........................................ 99 REFERENCES CITED ••............•..•.•.....•••.•.....•..•......... 109 v I I 1 FIGURES I I 1. Physiographic provinces of Georgia 3 2. The Georgia Valley and Ridge Province 4 I 3. Physiographic divisions of the Valley and Ridge Province 5 1 4. Distribution of chert resources in the Valley and Ridge Province 7 5. River systems in the Valley and Ridge Province 8 6. Distribution of floodplain soils along major rivers in the Valley and Ridge Province 11 7. Complicated stamped motifs referred to in the text 30 8. Radiocarbon dates for Mississippian sites in the Georgia Valley and Ridge Provi nce and surrounding areas, uncorrected 37 9.
    [Show full text]
  • * This Is an Excerpt from Protected Animals of Georgia Published By
    Common Name: RIVER REDHORSE Scientific Name: Moxostoma carinatum (Cope) Other Commonly Used Names: none Previously Used Scientific Names: Placopharynx carinatus Family: Catostomidae Rarity Ranks: G4/S2 State Legal Status: Rare Federal Legal Status: none Description: The river redhorse is a large, heavy-bodied sucker that can attain total lengths approaching 750 mm (30 in). The margin of the dorsal fin is straight to slightly concave and the upper lobe of the dorsal fin is pointed. The lips have deep longitudinal grooves (i.e., plicae). There are 12-14 dorsal fin rays, a complete lateral line with 42-44 scales (usually), and 6-9 large molariform teeth on the lower half of the pharyngeal arch. Body coloration of adults is brassy olive and the belly is white. The dorsal and caudal fins, particularly the distal margins of these fins, are bright red in adult males and females. Juveniles have a silvery body and a blotch saddle pattern across the back; juveniles may have red caudal fins, but not as intensely red as in adults. Breeding males develop medium to large tubercles on the snout, cheeks, head, anal rays and caudal rays, and may develop smaller tubercles elsewhere. During spawning, males develop a prominent dark lateral stripe, bordered above by a tan stripe, another dark stripe and a tan or pale dorsum; there is often a dark mask on the head. These spawning colors are ephemeral and will quickly vanish, especially if the fish is disturbed. Similar Species: The undescribed sicklefin redhorse (syntopic with the river redhorse only in Brasstown Creek, Towns Co.) also has brilliant red dorsal and caudal fins, but is easily distinguished by having a sickle-shaped (vs.
    [Show full text]
  • Water Use in the Tennessee Valley 2008.FH11
    in the Tennessee Valley for 2005 and Projected Use in 2030 TENNESSEE VALLEY AUTHORITY Prepared by River Operations in cooperation with U.S. Geological Survey Water Use in the Tennessee Valley for 2005 and Projected Use in 2030 Charles E. Bohac Michael J. McCall November 2008 Contents List of Tables ................................................................................................................................................. iii List of Figures ................................................................................................................................................ v Acknowledgments ......................................................................................................................................... vii Executive Summary ....................................................................................................................................... viii Introduction .................................................................................................................................................. 1–1 Background ............................................................................................................................................ 1–1 Purpose and Scope ............................................................................................................................... 1–2 Hydrologic Setting .................................................................................................................................. 1–2 Data Source
    [Show full text]
  • Conasauga River Alliance
    Conasauga River Alliance Elizabeth Hamilton & Julia M. Wondolleck Ecosystem Management Initiative School of Natural Resources and Environment The University of Michigan 430 E. University Ann Arbor, MI 48109-1115 www.snre.umich.edu/emi/cases/conasauga Copyright © 2003 by the Ecosystem Management Initiative All Rights Reserved. This paper may not be copied, reproduced, or translated without permission in writing from the authors. 1 Introduction The 90-mile Conasauga River begins in the Chattahoochee National Forest high in the Blue Ridge Mountains in northwest Georgia and flows north into Tennessee, then west, and finally south into Georgia. In Georgia, it becomes part of the larger Coosa Basin System that continues to Mobile Bay. The Conasauga River watershed is a 500,000-acre landscape that is home to 125,000 humans, and provides habitat for approximately 90 species of fish and 25 species of freshwater mussels (many of them threatened or endangered). Since the 1970s, the number of mussel species found in the river has dropped from 40 to 28. The river is also a source of water for agriculture, local communities, and a carpet-dying industry that creates 80% of the nation’s and 45% of the world’s carpets. Committed citizens and representatives from nearly 40 state and federal agencies, nonprofit conservation and research organizations, businesses, and universities have joined forces to protect the invaluable natural, cultural, economic, and recreational resources of the Conasauga River. Loosely assembled under the umbrella of the Conasauga River Alliance, the diverse partners carry out a multitude of independent and often collaborative activities in pursuit of the Alliance’s vision “to maintain a clean and beautiful Conasauga River – forever.” In 1999, the Forest Service chose the Conasauga River watershed as one of 15 priority large watersheds.
    [Show full text]