Forest Canopies, Plant Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Forest Canopies, Plant Diversity FOREST CANOPIES, PLANT DIVERSITY Nalini M. Nadkami,* Mark C. Mewin,* and Jurgen Niedert "The Evergreen State College and tBotanisches Institiit der Universitat Bonn I. Introduction water balance independent of fluctuating environ- 11. Categories of Canopy Plants mental conditions. 111. Canopy Plant Taxa Diversity lichen Composite organism consisting of a fungus (the IV. Diversity of Habitats of Canopy Plants mycobiont) and an alga and/or a cyanobacteria (the V. Diversity of Growth Habits in Canopy Plants phycobiont) that live in a symbiotic relationship. VI. Canopy Plant Biodiversity and mistletoe Woody parasite that taps the xylem of a tree, Conservation Biology but is capable of photosynthesis. VII. Areas for Further Study obligate epiphyte Plant that always grows on another plant for structural support, but derives no nutrients from the host. parasite Woody or nonwoody plant that taps into the GLOSSARY vascular system of a host plant and derives energy and/ or nutrients from it, often to the detriment of the host. accidental epiphyte Plant that normally grows terres- poikilohydry Condition of internal water balance vary- trially but that occasionally grows to maturity in a ing with changes in ambient humidity. tree crown, usually in terrestriallike microsites such primary hemiepiphyte Plant that begins its life cycle as the crotches of branches. anchored in a tree crown and ultimately becomes bryophyte Nonvascular plant of the division Bryophyta rooted in the ground (e.g., strangler fig). (a moss, liverwort, or hornwort). secondary hemiepiphyte Plant that begins its life cycle cryptogam Plant that reproduces by spores or gametes as a terrestrial seedling, ascends a tree, and can later rather than seeds; includes bryophytes and lichens. lose root connections with the ground, including (a) epiphyll (folicolous) Plant that grows on the leaf sur- lianas, woody climbing plants with relatively thick face of another plant. stems that generally grow in mature habitats, and (b) epiphyte Nonparasitic plant that uses another plant as vines, herbaceous climbing plants that regularly grow mechanical support but does not derive nutrients or in disturbed habitats or forest edges. water from its host. facultative epiphyte Plant or lichen that commonly grows epiphytically and terrestrially, usually exhib- iting preference for one or the other habit in a partic- THE IMPORTANCE OF THE PLANTS THAT DWELL ular habitat. IN FOREST CANOPIES is becoming increasingly recog- homoiohydry Ability to maintain a constant internal nized in relation to understanding biodiversity. The Encyclopedia of Biodiversity, Volume 3 Copyright O 2001 by Academic Press. All rights of reproduction in any form reserved. 28 FOREST CANOPIES, PLANT DIVERSITY upper tree canopy of many forest ecosystems fosters Rhoades, 1995). Here, we describe the diversity of many extremely diverse plant communities, which include types of canopy-dwelling plants. Included in this review vascular and nonvascular epiphytes, hemiepiphytes, are epiphytic vascular plants, epiphytic cryptogams and parasites. Canopy-dwelling plants contribute sub- (nonvascular plants that include lichens and bryo- stantially to overall forest biodiversity and biocomplex- phytes), primary and secondary hemiepiphytic vascular ity by providing resources for arboreal vertebrates, in- plants (lianas and vines), and arboreal parasitic vascular vertebrates, and microbes, and by participating in plants. Arboreal fungi and free-living algae are so poorly nutrient and water cycling and gas and energy ex- known that there is little to review. We place greatest changes. emphasis on obligate and facultative epiphytes, and exclude "accidental epiphytes" from this review. The term "diversity" in the following will be based I. INTRODUCTION on species as the unit of biological diversity, since as- sessment of other aspects of biodiversity is virtually A. Definition of the Forest Canopy nonexistent in the case of canopy plants. We first review the systematic distribution of canopy taxa and provide The forest canopy has been called "the last biotic fron- species counts based on the state of current knowledge. tier" (Erwin, 1988). It presents a habitat conducive to We discuss gradients of canopy plant diversity of mi- the evolution of literally thousands-perhaps mil- crosites within the canopy at various spatial scales, lions-of species of plants, microorganisms, insects, spanning a single microsite within a tree (e.g., twig, birds, and mammals that are rarely or never encoun- branch bifurcation) to regional and global levels. Bio- tered on the forest floor. Although forest canopies have geographical analyses of canopy-dwelling taxa are then been among the most poorly understood regions of our considered, as well as some of the major evolutionary planet, their mysteries are being explored by increasing elements that have influenced their distribution and numbers of biologists. Canopy communities are now abundance. "Habit diversity" (the diversity of morpho- believed to be important in maintaining the diversity, logical and physiological features) of arboreal taxa will resiliency, and functioning of the forests they inhabit. then be described. Finally, we discuss conservation ef- The forest canopy is a structurally complex and eco- forts that involve canopy plants and suggest future re- logically important subsystem of the forest. It is defined search possibilities. as "the aggregate of all crowns in a stand of vegetation, which is the combination of all foliage, twigs, fine C. Historical Roots and Sources branches, epiphytes as well as the interstices (air) in a forest" (Parker, 1995). The forest canopy is the primary of Information site of gas exchange between the atmosphere and vege- In 1832, Charles Darwin first described what he termed tation and fosters many ecosystem processes that are the great diversity and profusion of "parasitical plants" crucial to the maintenance and diversity of the forest (that we now understand to have been epiphytes), as a whole (Lowman and Nadkarni, 1995). which he encountered in abundance in the coastal for- ests of Brazil. In the late nineteenth century, the German botanist A. F. W. Schimper first described epiphytes B. Scope of This Article and outlined their importance to tropical botany. Trees are the most obvious structural component of Historically, canopy studies have been dominated by forest canopies. Their trunks, branches, and leaves con- people who sought the thrill of climbing and followed stitute the infrastructure of the canopy and provide the lure of discovering new species. Early European mechanical support for thousands of species of arboreal explorers hired climbers and trained monkeys to collect plants and animals. Tree species diversity is dis- specimens of "exotic" air-plants that grew out of reach. cussed elsewhere. Pioneering work in old-growth forests of the Pacific Although much has been published on canopy Northwest contributed to the application of mountain- plants, the question of the global importance of epi- climbing techniques for safe and reliable access to the phytes for the biodiversity of tropical forests in general canopies of tall trees. Since 1980, the innovation of and the canopy in particular has not been explicitly high-strength and low-cost canopy access equipment addressed. Previous reviews of canopy biodiversity have has made canopy study more viable as an option for primarily dealt with arthropods (Erwin, 1988), or with scientific research. There are now a wide variety of specific subgroups of canopy plants (Kress, 1986; access tools from which to choose, depending on the FOREST CANOPIES, PLANT DIVERSITY 29 questions being addressed and the available budget cling and in providing arboreal and terrestrial animals (Lowman and Nadkarni, 1995). With the development with food, water, and nesting materials (Nadkarni, of effective technological climbing methods such as the 1994). Ecophysiologists recognize the varied structures "canopy raft" and the canopy crane, and of ground- and mechanisms that protect vascular epiphytes from based methods such as insecticidal fogging, researchers drought (Benzing, 1990). now spend less time working on how to prudently work Some of the characteristics for regular occurrence in the treetops and more time pondering the difficulties on bark and associated aerial substrates are obvious in recording meaningful canopy data, analyzing it, and (e.g., holdfast roots and wind-dispersed propagules), interpreting the results. but others are more subtle. In an extensive review of A remarkable burgeoning of scientific interest in the vascular epiphytism, Benzing (1990) outlined a variety C canopy has occurred within the last decade. This is of characteristics that are exhibited by vascular epi- related to increasing concerns with such conservation phytes (Table I). issues as biodiversity, global atmospheric change, and Vascular epiphytes are mainly restricted to the low management of tropical rain forests. The number of latitudes and within the tropics. They reach their great- scientific publications on canopy structure has grown est abundance and diversity at low to mid-montane at a disproportionately rapid pace relative to the general elevations (Madison, 1977; Benzing, 1990). Ferns occur field of biology (Nadkami, 1994). Aspects of the canopy in higher latitudes along the margins of the Pacific, and have been the focus of many recent symposia, scientific a few hardy bromeliads and orchids occur in the mild books, and popular articles
Recommended publications
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • AMYDRIUM ZIPPELIANUM Araceae Peter Boyce the Genus Amydrium Schott Contains Five Species of Creeping and Climbing Aroids Occurring from Myanmar to Papua New Guinea
    McVean, D.N. (1974). The mountain climates of SW Pacific. In Flenley, J.R. Allitudinal Zonation in Malesia. Transactions of the third Aberdeen-Hull Symposium on Malesian Ecology. Hull University, Dept. of Geography. Miscellaneous Series No. 16. Mueller, F. van (1889). Records ofobservations on Sir William MacGregor’s highland plants from New Guinea. Transactions of the RoyalSocieQ of Victoria new series I(2): 1-45. Royen, P. van (1982). The Alpine Flora ofNew Guinea 3: 1690, pl. 140. Crarner, Vaduz. Schlechter, R. (1918). Die Ericaceen von Deutsch-Neu-Guinea. Botanische Jahrbiicher 55: 137- 194. Sinclair, I. (1984). A new compost for Vireya rhododendrons. The Planlsman 6(2): 102-104. Sleumer, H. (1949). Ein System der Gattung Rhododendron L. Botanische Jahrbiicher 74(4): 5 12-5 I 3. Sleumer, H. (1960). Flora Malesiana Precursores XXIII The genus Rhododendron in Malaysia. Reinwardtia 5(2):45-231. Sleumer, H. (1961). Flora Malesiana Precursores XXIX Supplementary notes towards the knowledge of the genus Rhododendron in Malaysia. Blumea 11(I): 113-131, Sleumer, H. (1963). Flora Malesianae Precursores XXXV. Supplementary notes towards the knowledge ofthe Ericaceae in Malaysia. Blumea 12: 89-144. Sleumer, H. (1966). Ericaceae. Flora Malesiana Series I. G(4-5): 469-914. Sleumer, H. (1973). New species and noteworthy records ofRhododendron in Malesia. Blumea 21: 357-376. Smith,J..J. (1914). Ericaceae. Nova Guinea 12(2): 132. t. 30a, b. Brill, Leiden. Smith,J.J. (1917). Ericaceae. Noua Guinea 12(5):506. Brill, Leiden. Stevens, P.F. (1974). The hybridization and geographical variation of Rhododendron atropurpureum and R. woniersleyi. Proceedings ofthe Papua New Guinea ScientificSociety.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Calophyllaceae Da Bahia E Padrões De Distribuição De
    AMANDA PRICILLA BATISTA SANTOS CALOPHYLLACEAE DA BAHIA E PADRÕES DE DISTRIBUIÇÃO DE KIELMEYERA NA MATA ATLÂNTICA FEIRA DE SANTANA – BAHIA 2015 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA CALOPHYLLACEAE DA BAHIA E PADRÕES DE DISTRIBUIÇÃO DE KIELMEYERA NA MATA ATLÂNTICA AMANDA PRICILLA BATISTA SANTOS Dissertação apresentada ao Programa de Pós- Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Mestre em Botânica. ORIENTADOR: PROF. DR. ALESSANDRO RAPINI (UEFS) FEIRA DE SANTANA – BAHIA 2015 Ficha Catalográfica – Biblioteca Central Julieta Carteado Santos, Amanda Pricilla Batista S233c Calophyllaceae da Bahia e padrões de distribuição de Kielmeyera na Mata Atlântica. – Feira de Santana, 2015. 121 f. : il. Orientador: Alessandro Rapini. Dissertação (mestrado) – Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Botânica, 2015. 1. Kielmeyera. 2. Calophyllaceae. 2. Florística – Bahia. I. Rapini, Alessandro, orient. II. Universidade Estadual de Feira de Santana. III. Título. CDU: 582(814.2) BANCA EXAMINADORA ________________________________________________________ Pedro Fiaschi ________________________________________________________ Daniela Santos Carneiro Torres ________________________________________________________ Prof. Dr. Alessandro Rapini Orientador e presidente da Banca FEIRA DE SANTANA – BAHIA 2015 Aos meus queridos pais, por todo apoio e incentivo, dedico. AGRADECIMENTOS
    [Show full text]
  • Use of Native Tree Species by an Hispanic Community in Panama Author(S): Salomón Aguilar and Richard Condit Source: Economic Botany, Vol
    Use of Native Tree Species by an Hispanic Community in Panama Author(s): Salomón Aguilar and Richard Condit Source: Economic Botany, Vol. 55, No. 2 (Apr. - Jun., 2001), pp. 223-235 Published by: Springer on behalf of New York Botanical Garden Press Stable URL: http://www.jstor.org/stable/4256423 . Accessed: 29/07/2011 18:56 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=nybg. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Economic Botany. http://www.jstor.org USE OF NATIVE TREE SPECIES BY AN HISPANIC COMMUNITY IN PANAMA1 SALOMON AGUILAR AND RICHARD CONDIT Aguilar, Salomon and Richard Condit (Centerfor Tropical Forest Science, Smithsonian TropicalResearch Institute,Unit 0948, APO AA 34002-0948 USA;fax 507-212-8148 (Pana- ma); email [email protected]).
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • Analysing the History of the Derelomine Flower Weevil-Carludovica Association (Coleóptera: Curculionidae; Cyelanthaeeae)
    Biological Journal of the Linnean Society, 2004, 81, 483•517. With 17 figures Analysing the history of the derelomine flower weevil-Carludovica association (Coleóptera: Curculionidae; Cyelanthaeeae) NICO M. FRANZ* Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria 'Rodrigo Fació', Costa Rica Received 14 April 2003; accepted for publication 23 September 2003 The evolutionary history of the interaction among species of derelomine flower weevils (Coleóptera: Curculionidae: Derelomini) and the Panama-hat palm Carludovica (Cyelanthaeeae) is analysed with emphasis on the congruence of (1) topologies and (2) character state transformations in each of the Neotropical clades. For this purpose cladistic analyses are complemented with host plant records, natural history information and selected morphological studies of the associated taxa. The interaction is specialized, involving pollination, oviposition into the inflorescences and the prédation of seeds (particularly within Systenotelus). As results from a range of standard coevolutionary methods of analysis indicate, however, events of colonization, extinction and independent (non-reciprocal) speciation have been abundant throughout the history of the association. At the same time it is possible to specify the homology and suc- cession of characters among species of derelomines and Carludovica and interpret them as reciprocal adaptations to attack and protect the seeds, respectively. It is argued that • in light of the limited evolutionary stability of many insect•plant interactions • the question of coevolution is most effectively addressed by combining information from the character- and topology-based approaches. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81, 483-517. ADDITIONAL KEYWORDS: cladistics • congruence • coevolution • Derelomini • Ganglionus • Perelleschus • pollination • reciprocal adaptation • seed prédation • Systenotelus.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Rubiaceae) in Africa and Madagascar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Syst Evol (2010) 285:51–64 DOI 10.1007/s00606-009-0255-8 ORIGINAL ARTICLE Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar Franc¸ois Anthony • Leandro E. C. Diniz • Marie-Christine Combes • Philippe Lashermes Received: 31 July 2009 / Accepted: 28 December 2009 / Published online: 5 March 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Phylogeographic analysis of the Coffea subge- biogeographic differentiation of coffee species, but they nus Coffea was performed using data on plastid DNA were not congruent with morphological and biochemical sequences and interpreted in relation to biogeographic data classifications, or with the capacity to grow in specific on African rain forest flora. Parsimony and Bayesian analyses environments. Examples of convergent evolution in the of trnL-F, trnT-L and atpB-rbcL intergenic spacers from 24 main clades are given using characters of leaf size, caffeine African species revealed two main clades in the Coffea content and reproductive mode. subgenus Coffea whose distribution overlaps in west equa- torial Africa. Comparison of trnL-F sequences obtained Keywords Africa Á Biogeography Á Coffea Á Evolution Á from GenBank for 45 Coffea species from Cameroon, Phylogeny Á Plastid sequences Á Rubiaceae Madagascar, Grande Comore and the Mascarenes revealed low divergence between African and Madagascan species, suggesting a rapid and radial mode of speciation. A chro- Introduction nological history of the dispersal of the Coffea subgenus Coffea from its centre of origin in Lower Guinea is pro- Coffeeae tribe belongs to the Ixoroideae monophyletic posed.
    [Show full text]
  • Araliaceae.Pdf
    ARALIACEAE 五加科 wu jia ke Xiang Qibai (向其柏 Shang Chih-bei)1; Porter P. Lowry II2 Trees or shrubs, sometimes woody vines with aerial roots, rarely perennial herbs, hermaphroditic, andromonoecious or dioecious, often with stellate indumentum or more rarely simple trichomes or bristles, with or without prickles, secretory canals pres- ent in most parts. Leaves alternate, rarely opposite (never in Chinese taxa), simple and often palmately lobed, palmately compound, or 1–3-pinnately compound, usually crowded toward apices of branches, base of petiole often broad and sheathing stem, stipules absent or forming a ligule or membranous border of petiole. Inflorescence terminal or pseudo-lateral (by delayed development), um- bellate, compound-umbellate, racemose, racemose-umbellate, or racemose-paniculate, ultimate units usually umbels or heads, occa- sionally racemes or spikes, flowers rarely solitary; bracts usually present, often caducous, rarely foliaceous. Flowers bisexual or unisexual, actinomorphic. Pedicels often jointed below ovary and forming an articulation. Calyx absent or forming a low rim, some- times undulate or with short teeth. Corolla of (3–)5(–20) petals, free or rarely united, mostly valvate, sometimes imbricate. Stamens usually as many as and alternate with petals, sometimes numerous, distinct, inserted at edge of disk; anthers versatile, introrse, 2- celled (or 4-celled in some non-Chinese taxa), longitudinally dehiscent. Disk epigynous, often fleshy, slightly depressed to rounded or conic, sometimes confluent with styles. Ovary inferior (rarely secondarily superior in some non-Chinese taxa), (1 or)2–10(to many)-carpellate; carpels united, with as many locules; ovules pendulous, 2 per locule, 1 abortive; styles as many as carpels, free or partially united, erect or recurved, or fully united to form a column; stigmas terminal or decurrent on inner face of styles, or sessile on disk, circular to elliptic and radiating.
    [Show full text]
  • Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
    Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm.
    [Show full text]
  • Ackama Rosifolia
    Ackama rosifolia COMMON NAME Makamaka SYNONYMS Caldcluvia rosifolia (A.Cunn.) Hoogland FAMILY Cunoniaceae AUTHORITY Ackama rosifolia A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ACKROS Fruit. In cultivation. Nov 2006. Photographer: Peter de Lange CHROMOSOME NUMBER 2n=32 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small Northland tree. Leaves consisting of 4 to 10 or more opposite pairs of toothed leaflets and a terminal leaflet which have small hairy pits at the junction of the main leaflet veins. Flowers in dense sprays of cream coloured flowers developing into pinkish or red fruits. DISTRIBUTION Endemic. North Island only from near Kaitaia south to just north of Wellsford. Often rather local in its occurrences, particularly south of Whangarei. Fruit. In cultivation. Nov 2006. Photographer: SIMILAR TAXA Peter de Lange Very similar to juvenile foliage of Weinmannia silvicola but can be distinguished by the domatia on the underside of the leaves. These domatia are known as tuft pocket domatia and occur at the junction of the mid-rib and the side vein where there is a pocket of hairs. Makamaka also has huge prominent stipules that are large, green and heavily veined. FLOWER COLOURS Cream, White LIFE CYCLE Hairy carpels dispersed by wind (Thorsen et al., 2009). PROPAGATION TECHNIQUE Can be grown from semi-hardwood cuttings and fresh seed. A fast growing, and rather attractive small tree. However, very drought intolerant, and needs a damp soil and sunny aspect to thrive.
    [Show full text]