Overexpression of Peptidyl-Prolyl Isomerase-Like 1Is Associated With

Total Page:16

File Type:pdf, Size:1020Kb

Overexpression of Peptidyl-Prolyl Isomerase-Like 1Is Associated With Human Cancer Biology Overexpression of Peptidyl-Prolyl Isomerase-Like 1 Is Associated with the Growth of Colon Cancer Cells Kazutaka Obama,1Tatsushi Kato,3 Suguru Hasegawa,3 Seiji Satoh,3 Yusuke Nakamura,1and Yoichi Furukawa2 Abstract Purpose and Experimental Design: To discover novel therapeutic targets for colon cancers, we previously surveyed expression patterns among 23,000 genes in colon cancer tissues using a cDNA microarray. Among the genes that were up-regulated in the tumors, we selected for this study peptidyl-prolyl isomerase-like1 (PPIL1) encoding PPIL1, a cyclophilin-related protein. Results: Western blot analysis and immunohistochemical staining using PPIL1-specific antibody showed that PPIL1protein was frequently overexpressed in colon cancer cells compared with noncancerous epithelial cells of the colon mucosa. Colony formation assay showed a growth- promoting effect of wild-type PPIL1 on NIH3T3 and HEK293 cells. Consistently, transfection of short-interfering RNA specific to PPIL1 into SNUC4 and SNUC5 cells effectively reduced expres- sion of the gene and retarded growth of the colon cancer cells.We further identified two PPIL1- interacting proteins, SNW1/SKIP (SKI-binding protein) and stathmin. SNW1/SKIP is involved in the regulation of transcription and mRNA splicing, whereas stathmin is involved in stabilization of microtubules. Therefore, elevated expression of PPIL1may play an important role in proliferation of cancer cells through the control of SNW1/SKIPand/or stathmin. Conclusion: The findings reported here may offer new insight into colonic carcinogenesis and contribute to the development of new molecular strategies for treatment of human colorectal tumors. Colon cancer is one of the most common causes of cancer Peptidyl-prolyl isomerase-like 1 (PPIL1) was first identified as a death throughout the world. Molecular investigations have cyclophilin-related gene encoding a protein that shares 46.0% provided evidence that multiple genetic alterations are involved identity in amino acid sequence with human cyclophilin A (8). in colorectal tumorigenesis. Early in those studies, loss of It is expressed in heart, skeletal muscle, and liver (8). However, heterozygosity was observed frequently at loci on chromo- its biological function remains unclear. Cyclophilins and somes 1p, 2p, 3p, 5q, 8p, 11q, 17p, 18q, and 22q (1, 2). Later, FK506-binding proteins are two families of peptidyl-prolyl alterations in genes encoding K-ras, adenomatous polyposis isomerases that are extensively characterized. Cyclophilins form coli protein (APC), h-catenin (CTNNB1), p53 (TP53), and/or complexes with cyclosporin A, whereas FK506-binding proteins conductin (AXIN2) were shown to be involved in colonic bind the immunosuppressant drug FK506. A third family of carcinogenesis (3–7). In spite of intensive study at the peptidyl-prolyl isomerases includes parvulin and Pin1. These molecular level, however, the roles of a large number of genes proteins do not bind immunosuppressants but are involved that show altered expression in colorectal cancers remain in cell cycle progression and cell survival (9, 10). Pin1 is a unclear. phosphorylation-dependent peptidyl-prolyl isomerase that catalyzes the cis-trans isomerization of phosphoserine-proline and phosphothreonine-proline bonds in multiple proteins such as CDC25, RNA polymerase II, cyclin D1, p53, and Tau Authors’Affiliations: 1Laboratory of Molecular Medicine; 2Promotion of Genome- (11, 12). It interacts with phosphorylated-p53 when the latter Based Medicine Project, Human Genome Center, Institute of Medical Science,The is activated in response to DNA damage, altering the stability of University ofTokyo,Tokyo, Japan; and 3Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan p53 through isomerization of a motif involving a serine/ Received 3/16/05; revised 10/7/05; accepted 10/10/05. threonine residue followed by a proline (Ser/Thr-Pro; Grant support: Research for the Future Program grant 00L01402 from the Japan refs. 10, 13). All of these peptidyl-prolyl isomerase families Society for the Promotion of Science. carry out cis-trans isomerization of the peptide bond on the The costs of publication of this article were defrayed in part by the payment of page NH -terminal side of Pro residues, forming a tight bend in the charges. This article must therefore be hereby marked advertisement in accordance 2 with 18 U.S.C. Section 1734 solely to indicate this fact. polypeptide backbone that substantially changes the confor- Note: K. Obama and T. Kato contributed equally to this work. mation of the protein. Through this isomerization and Requests for reprints: Yoichi Furukawa, Promotion of Genome-Based Medicine consequent conformational change, peptidyl-prolyl isomerases Project, Human Genome Center, Institute of Medical Science, The University of alter the functions of their target proteins (14). Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan. Phone: 81-3- 5449-5373; Fax: 81-3-5449-5124; E-mail: [email protected]. To discover target molecules for development of novel F 2006 American Association for Cancer Research. diagnostic strategies and/or therapeutic drugs, we previously doi: 10.1158/1078-0432.CCR-05-0588 carried out a genome-wide analysis of gene expression in Clin Cancer Res 2006;12(1) January 1, 2006 70 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2006 American Association for Cancer Research. PPIL1 as a Novel MolecularTarget for Colon Cancer human colon cancer tissues by means of cDNA microarray siB; and 5V-TCCCCCAGCTTCTAGATGACATATTCAAGAGATATGT- consisting of 23,040 genes (15). In this report, we show that CATCTAGAAGCTGG-3V and 5V-AAAACCAGCTTCTAGATGACA- PPIL1, a gene that is frequently up-regulated in colon cancers, TATCTCTTGAATATGTCATCTAGAAGCTGG-3V for siC. psiH1BX-PPIL1 promotes growth of cancer cells. In addition, we document or psiH1BX-EGFP (17) plasmids were transfected into SNUC4 and SNUC5 cells, which constitutionally express abundant PPIL1. Silencing interactions between PPIL1 and two known proteins, SNW1/ of PPIL1 by the plasmids was examined by semiquantitative reverse SKIP and stathmin, in vitro and in vivo. These data may not only transcription-PCR 48 hours after transfection. Cells transfected with lead to a more profound understanding of colorectal carcino- the plasmids were cultured in the presence of appropriate concentra- genesis but also provide clues for the development of novel tion of geneticin (G418) for 10 days, when viability of transfected cells therapeutic strategies. was examined by cell counting kit according to the protocol of the supplier (Dojindo Laboratories, Kumamoto, Japan). We additionally analyzed sub-G1 and G0-G1,S,andG2-M populations in cells Materials and Methods transfected with psiH1BX-PPIL1 or psiH1BX-EGFP using flow cytom- eter according to the recommendations of the manufacturer (Becton Cell lines and tissue specimens. Human colon cancer cell lines Dickinson, San Jose, CA). SNUC4 and SNUC5 were obtained from the Korean cell line bank. Bacterial two-hybrid experiment. A bacterial two-hybrid system HEK293 (human embryonic kidney), COS-7 (monkey kidney), and (Stratagene) was done with the BacterioMatch Two-Hybrid System NIH3T3 (mouse fibroblasts) cells were purchased from the American according to the protocols of the manufacturer. We cloned the entire Type Culture Collection (Rockville, MD). All tumor tissues and coding sequence of PPIL1 into the BamHl-Xhol site of pBT vector as a corresponding nontumorous mucosae were excised with informed bait and screened a human fetal-brain cDNA library (Stratagene). consent from 79 patients who underwent colectomy or endoscopic Immunoprecipitation assay. The entire coding region of the polypectomy at the Department of Surgery, Tokyo Hitachi Hospital. human stathmin gene (STMN1) and SNW1/SKIP was amplified by Real-time PCR (TaqMan) assay. Extraction of RNA, preparation of reverse transcription-PCR using primers as follows: 5V-ATTAGAT- cDNA, and real-time PCR were done as described previously (16). The CTTCACCATGGCTTCTGATATCC-3V (forward) and 5V-AATGGT- h-actin gene (ACTB) served as a quantitative control. The sequences ACCTTAGTCAGCTTCAGTCTCGTCAGC-3V(reverse) for stathmin, and of primers and probes are as follows: PPIL1 forward primer, 5V-TGGGAATTCCGGAAGAAGATGGCGCTCACCAGC-3V (forward) and 5V-TGACCCAACAGGGACAGGTC-3V and reverse, 5V-GTTCATCTT- 5V-GTGCCTCGAGCTTCCTCCTCTTCTTGCCTTCATGC-3V (reverse) for CAAACTGTTTGCCAT-3V; probe, 5V-FAM-AGGTGGTGCATCTAT-MGB- SNW1/SKIP. The PCR products were cloned into pCMV-HA or 3V; ACTB forward primer, 5V-GGCACCCAGCACAATGAAG-3V and pcDNA3.1/Myc-His (Invitrogen), respectively. COS-7 cells transfected reverse, 5V-ACACGGAGTACTTGCGCTCA-3V; probe, 5V-FAM-TCAAGAT- with pFLAG-PPIL1 (expressing FLAG-tagged PPIL1), pCMVHA-STMN1 CATTGCTCCTC-MGB-3V. (expressing HA-tagged stathmin), pcDNA-SNW1/SKIP-myc (expressing Immunoblot analysis and immunohistochemical staining using poly- myc-tagged SNW1/SKIP), or a combination of the plasmids were clonal antibody against PPIL1. The polyclonal antibody to PPIL1 was washed with PBS and lysed in TNE buffer. Immunoprecipitation and purified from sera of immunized rabbit with recombinant glutathione immunoblotting were carried out using anti-HA (3F10; Roche, S-transferase–PPIL1 protein prepared in Escherichia coli. Immunohis- Mannheim, Germany), anti-myc (9E10: Santa Cruz Biotechnologies, tochemical staining was carried out using affinity-purified
Recommended publications
  • 32-2709: PPIL1 Recombinant Protein Description Product Info Application
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-2709: PPIL1 Recombinant Protein Alternative Name : Peptidyl-Prolyl Cis-Trans Isomerase-Like 1,PPIL-1,CYPL1,hCyPX,MGC678,PPIase,CGI-124,PPIL1. Description Source : Escherichia Coli. PPIL1 Human Recombinant protein produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 174 amino acids (1-166) and having a molecular mass of 19.3 kDa. PPIL1 is fused to 8 amino acid His Tag at C-terminus and is purified by proprietary chromatographic techniques. PPIL1 belongs to the cyclophilin family of peptidylprolyl isomerases (PPIases). The cyclophilins are a well conserved, ubiquitous family, members of which take an significant part in protein folding, immunosuppression by cyclosporin A, and infection of HIV-1 virions. PPIL1 protein increases the folding of proteins and catalyze the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. PPIL1 is involved in proliferation of cancer cells through modulation of phosphorylation of stathmin. PPIL1 is a novel molecular target for colon- cancer therapy. Product Info Amount : 50 µg Purification : Greater than 95.0% as determined by SDS-PAGE. Content : PPIL1 solution containing 20 mM Tris-HCl buffer (pH 8.0) and 20% glycerol PPIL1 Human Recombinant although stable at 4°C for 1 week, should be stored desiccated below Storage condition : -18°C. Please prevent freeze thaw cycles. Amino Acid : MAAIPPDSWQ PPNVYLETSM GIIVLELYWK HAPKTCKNFA ELARRGYYNG TKFHRIIKDF MIQGGDPTGT GRGGASIYGK QFEDELHPDL KFTGAGILAM ANAGPDTNGS QFFVTLAPTQ WLDGKHTIFG RVCQGIGMVN RVGMVETNSQ DRPVDDVKII KAYPSGLEHH HHHH. Application Note Specific activity is > 300 nmoles/min/mg, and is defined as the amount of enzyme that cleaves 1umole of suc-AAFP-pNA per minute at 25C in Tris-Hcl pH8.0 using chymotrypsin.
    [Show full text]
  • In Silico Analysis of Regulatory Elements of the Vitamin D Receptor
    Open Access Baghdad Science Journal P-ISSN: 2078-8665 2020, 17(2):463-470 E-ISSN: 2411-7986 DOI: http://dx.doi.org/10.21123/bsj.2020.17.2.0463 In Silico Analysis of Regulatory Elements of the Vitamin D Receptor Shirin Farivar 1 Roya Amirinejad 2 Bahar Naghavi gargari 3 Seyedeh Batool Hassani 4 Zeinab Shirvani-Farsani 1* Received 26/2/2019, Accepted 5/1/2020, Published 1/6/2020 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract Vitamin D receptor (VDR) is a nuclear transcription factor that controls gene expression. Its impaired expression was found to be related to different diseases. VDR also acts as a regulator of different pathways including differentiation, inflammation, calcium and phosphate absorption, etc. but there is no sufficient knowledge about the regulation of the gene itself. Therefore, a better understanding of the genetic and epigenetic factors regulating the VDR may facilitate the improvement of strategies for the prevention and treatment of diseases associated with dysregulation of VDR. In the present investigation, a set of databases and methods were used to identify putative functional elements in the VDR locus. Histone modifications, CpG Islands, epigenetic marks at VDR locus were indicated. In addition, repeated sequences, enhancers, insulators, transcription factor binding sites and targets of the VDR gene, as well as protein- protein interactions with bioinformatics tools, were reported. Some of these genetic elements had overlapped with CpG Islands. These results revealed important new insight into the molecular mechanisms of the VDR gene regulation in human cells and tissues. Key words: CpG Islands, Epigenetics, In silico analysis, Regulation elements, VDR Introduction: Vitamin D is a steroid hormone that multiple sclerosis (10), Rheumatoid Arthritis and balances calcium and phosphate levels and is Systemic Lupus Erythematosus (11), cardiovascular crucial for bone structure.
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • UCSD MOLECULE PAGES Doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All Rights Reserved
    UCSD MOLECULE PAGES doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All rights reserved. Review Article Open Access WAVE2 Tadaomi Takenawa1, Shiro Suetsugu2, Daisuke Yamazaki3, Shusaku Kurisu1 WASP family verprolin-homologous protein 2 (WAVE2, also called WASF2) was originally identified by its sequence similarity at the carboxy-terminal VCA (verprolin, cofilin/central, acidic) domain with Wiskott-Aldrich syndrome protein (WASP) and N-WASP (neural WASP). In mammals, WAVE2 is ubiquitously expressed, and its two paralogs, WAVE1 (also called suppressor of cAMP receptor 1, SCAR1) and WAVE3, are predominantly expressed in the brain. The VCA domain of WASP and WAVE family proteins can activate the actin-related protein 2/3 (Arp2/3) complex, a major actin nucleator in cells. Proteins that can activate the Arp2/3 complex are now collectively known as nucleation-promoting factors (NPFs), and the WASP and WAVE families are a founding class of NPFs. The WAVE family has an amino-terminal WAVE homology domain (WHD domain, also called the SCAR homology domain, SHD) followed by the proline-rich region that interacts with various Src-homology 3 (SH3) domain proteins. The VCA domain located at the C-terminus. WAVE2, like WAVE1 and WAVE3, constitutively forms a huge heteropentameric protein complex (the WANP complex), binding through its WHD domain with Abi-1 (or its paralogs, Abi-2 and Abi-3), HSPC300 (also called Brick1), Nap1 (also called Hem-2 and NCKAP1), Sra1 (also called p140Sra1 and CYFIP1; its paralog is PIR121 or CYFIP2). The WANP complex is recruited to the plasma membrane by cooperative action of activated Rac GTPases and acidic phosphoinositides.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Stathmin Is Overexpressed in Malignant Mesothelioma
    ANTICANCER RESEARCH 27: 39-44 (2007) Stathmin is Overexpressed in Malignant Mesothelioma JAE Y. KIM1, CHANSONETTE HARVARD1, LIANG YOU1, ZHIDONG XU1, KRISTOPHER KUCHENBECKER1, RICK BAEHNER2 and DAVID JABLONS1 1Thoracic Oncology Laboratory, UCSF Comprehensive Cancer Center, San Francisco, CA 94115; 2Department of Pathology, UCSF, San Francisco, CA 94115, U.S.A. Abstract. Background: Malignant pleural mesothelioma is a unclear (7, 8). Unlike many other epithelial cancers, the highly aggressive cancer, with low overall survival. The activation of ras genes and inactivation of Rb and p53 genes pathogenesis of mesothelioma is poorly understood. The aim of do not seem to be necessary for the development of this study was to identify potential genes overexpressed in mesothelioma (9, 10). Alterations of several molecular mesothelioma. Materials and Methods: A cDNA microarray was pathways, including epidermal growth factor receptor, cell used to identify potential genes that are activated in mesothelioma cycle regulatory genes, and developmental pathways have cell lines. Overexpression of stathmin, a cytosolic protein that been linked to mesothelioma (11, 12). There is also regulates microtubule dynamics, was found. RT-PCR, Western evidence that Simian virus 40 (SV40) may contribute to the blot, and immunohistochemistry were used to confirm develop of mesothelioma, but the exact genetic alterations overexpression in both cell lines and tumor samples. Results: leading to mesothelioma remain unknown (11, 13). Using RT-PCR and Western blot, stathmin overexpression was The aim of this study was to identify potential genes confirmed in seven mesothelioma cell lines. Increased stathmin involved in the pathogenesis of mesothelioma. protein expression was also found in seven out of eight mesothelioma tumor samples.
    [Show full text]
  • SKIP Counteracts P53-Mediated Apoptosis Via Selective Regulation of P21cip1 Mrna Splicing
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing Yupeng Chen, Lirong Zhang, and Katherine A. Jones1 Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA The Ski-interacting protein SKIP/SNW1 functions as both a splicing factor and a transcriptional coactivator for induced genes. We showed previously that transcription elongation factors such as SKIP are dispensable in cells subjected to DNA damage stress. However, we report here that SKIP is critical for both basal and stress-induced expression of the cell cycle arrest factor p21Cip1. RNAi chromatin immunoprecipitation (RNAi-ChIP) and RNA immunoprecipitation (RNA-IP) experiments indicate that SKIP is not required for transcription elongation of the gene under stress, but instead is critical for splicing and p21Cip1 protein expression. SKIP interacts with the 39 splice site recognition factor U2AF65 and recruits it to the p21Cip1 gene and mRNA. Remarkably, SKIP is not required for splicing or loading of U2AF65 at other investigated p53-induced targets, including the proapoptotic gene PUMA. Consequently, depletion of SKIP induces a rapid down-regulation of p21Cip1 and predisposes cells to undergo p53-mediated apoptosis, which is greatly enhanced by chemotherapeutic DNA damage agents. ChIP experiments reveal that SKIP is recruited to the p21Cip1, and not PUMA, gene promoters, indicating that p21Cip1 gene-specific splicing is predominantly cotranscriptional. The SKIP-associated factors DHX8 and Prp19 are also selectively required for p21Cip1 expression under stress. Together, these studies define a new step that controls cancer cell apoptosis.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • The Role of the Rho Gtpases in Neuronal Development
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets.
    [Show full text]
  • Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
    Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter.
    [Show full text]