Nest Desertion in a Reintroduced Population of Migratory Whooping Cranes

Total Page:16

File Type:pdf, Size:1020Kb

Nest Desertion in a Reintroduced Population of Migratory Whooping Cranes PROCEEDINGS OF THE NORTH AMERICAN CRANE WORKSHOP ______________________________________________________________________________ 2010 NEST DESERTION IN A REINTRODUCED POPULATION OF MIGRATORY WHOOPING CRANES Richard P. Urbanek Sara E. Zimorski Anna M. Fasoli Eva K. Szyszkoski ______________________________________________________________________________ Urbanek, R. P., S. E. Zimorski, A. M. Fasoli, and E. K. Szyszkoski. 2010. Nest desertion in a reintroduced population of migratory whooping cranes. Proceedings of the North American Crane Workshop 11:133-141. ______________________________________________________________________________ The North American Crane Working Group provides free and open access to articles in Proceedings of the North American Crane Workshop. No additional permission is required for unrestricted use, distribution, or reproduction in any medium, provided that the original work here is properly cited. Visit http://www.nacwg.org to download individual articles or to download or purchase complete Proceedings. © 2010 North American Crane Working Group NEST DESERTION IN A REINTRODUCED POPULATION OF MIGRATORY WHOOPING CRANES RICHARD P. URBANEK,1 U.S. Fish and Wildlife Service, Necedah National Wildlife Refuge, W7996 20th Street West, Necedah, WI 54646, USA SARA E. ZIMORSKI, International Crane Foundation, E-11376 Shady Lane Road, Baraboo, WI 53913, USA ANNA M. FASOLI,2 International Crane Foundation, E-11376 Shady Lane Road, Baraboo, WI 53913, USA EVA K. SZYSZKOSKI, International Crane Foundation, E-11376 Shady Lane Road, Baraboo, WI 53913, USA Abstract: Reintroduction of an eastern migratory population of whooping cranes (Grus americana) into eastern North America began in 2001. Reproduction first occurred in 2005. Through 2008, eggs were produced in 22 first nests and 2 renests. All first nests failed–50% confirmed due to desertion by the parents and the remaining nest failures also consistent with the pattern of parental desertion. Nest failures were not related to stage of incubation, and they were often synchronous. Temperatures in winter and early spring affected timing of nest failure. An environmental factor such as harassment of incubating cranes by black flies (Simulium spp.) may be responsible for widespread nest desertion. PROCEEDINGS OF THE NORTH AMERICAN CRANE WORKSHOP 11:133-141 Key words: black flies, Grus americana, incubation, nest desertion, reintroduction, reproduction, Simulium, whooping crane, Wisconsin. The whooping crane (Grus americana) is a have been adequate to make establishment of a federally-listed, critically endangered species. The only population possible. Likewise, reproductive behavior has currently viable population consists of a naturally progressed with almost all females in the core occurring remnant flock that breeds in Wood Buffalo reintroduction area pairing, occupying established National Park, Northwest Territories, Canada, and territories, and egg laying as appropriate for their age winters on Aransas National Wildlife Refuge (NWR), (Urbanek et al. 2010a, 2010b; R. Urbanek, unpublished Texas. Recovery of the species depends on data; WCEP annual reports 2007-08). However, establishment of additional flocks separate from this reproductive failure due to nest desertion has appeared as existing population. Reintroductions begun in the an unanticipated threat to success of the reintroduction. Rocky Mountains in 1975 (migratory) and central This paper describes this problem during 2005-08. Florida in 1993 (non-migratory) have been unsuccessful. In 1998, after considering factors STUDY AREAS including avoiding the Central Flyway and range of the existing natural population, limited interest elsewhere The core reintroduction area consists of a large in Canada, identification of potential wintering areas in shallow wetland complex in central Wisconsin the eastern U.S., migration routes of sandhill crane (Urbanek et al. 2010b). All breeding territories were populations, and logistics of reintroduction, the U.S.- located within this area, mainly on Necedah NWR Canadian Whooping Crane Recovery Team (WCRT) (44°04'N, 90°10'W). Ultralight-training and release recommended Wisconsin as the next reintroduction sites were on Necedah NWR. Summer, migration, and area. The WCRT selected central Wisconsin, with wintering areas used by the population have been efforts focused on Necedah NWR, as the specific previously described (Urbanek et al. 2005b, 2010a). reintroduction site in the following year. The Whooping Crane Eastern Partnership (WCEP) METHODS began reintroduction of this eastern migratory flock of whooping cranes in 2001. Resulting survival, migration, General project methodology has been previously and human avoidance behavior of reintroduced cranes described (Urbanek et al. 2005a, 2010a, 2010b). Cranes were costume/isolation-reared (Horwich 1989, Urbanek and Bookhout 1992a) as juveniles in 2001-05 1 E-mail: [email protected] and led by ultralight aircraft (Lishman et al. 1997, Duff 2 Present address: 731 Station Road, Nanty Glo, PA 15943, USA et al. 2001, Ellis et al. 2003) on their first autumn 133 134 NEST DESERTION BY REINTRODUCED WHOOPING CRANES • Urbanek et al. Proc. North Am. Crane Workshop 11:2010 migration from Necedah NWR, central Wisconsin, to initiation was indicated by observation of only 1 crane, Chassahowitzka NWR, central Gulf Coast of Florida. e.g., foraging, when earlier both members of the pair After spending their first winter at a protected release had been present. In all instances in which existence of site where they could move freely from a large, open- a nest was predicted by this method, a nest was later topped pen (Urbanek 2010a), the cranes made the confirmed by other methods or by direct examination subsequent spring migrations on their own. after abandonment. Because whooping and other In this paper “first nest” refers to the first nest cranes spend very little time off their nests during containing eggs of each pair in each year; “renest” incubation (Allen 1952:182, Walkinshaw 1965), radio refers to any subsequent nest containing eggs. Nest signals or sightings of both cranes away from the nest “failure” indicates that no chicks hatched from the for more than 2 hours indicated nest failure or a serious subject nest. Nest “desertion” refers to a specific type disturbance problem at the nest. of nest failure caused by both adults leaving the nest We placed collected viable eggs in a portable unattended. incubator and transported them to the International We monitored breeding pairs and nest activity daily Crane Foundation, Baraboo, Wisconsin, for continued during each year (2005-08) by standard tracking incubation. They were next transferred to USGS methods including VHF telemetry with scanner Patuxent Wildlife Research Center, Laurel, Maryland, receivers (Advanced Telemetry Systems, Isanti, MN; to provide additional chicks for reintroduction. Egg Telonics, Mesa, AZ) and, where possible, direct visual manipulations have previously been used as a observation. We tracked cranes mainly from vehicles management tool at Wood Buffalo National Park (Kuyt on the ground and supplemented with aerial surveys 1996). In 2008, in an effort to investigate egg from Cessna aircraft. Each ground tracking vehicle was manipulations as a management tool to promote equipped with a through-the-roof, 7-element yagi hatching, we replaced artificial eggs with a viable egg antenna (Cushcraft Corporation, Manchester, NH). We in 1 nest. conducted time-lapse daylight videotape recording at 2 We used pooled t-tests to compare differences in first nests and 1 renest in 2007 and at 3 first nests in incubation length between the nesting season following 2008. Distance from camera to nest varied from 150 to a cold winter (2008) and nesting seasons of earlier 450 m. (warmer winter) years as well as temperature We positioned cameras on the tops of 3-m-high differences between days of successful incubation and poles set along roads or dikes where birds were nest failure. We used multinomial chi-square tests to accustomed to viewing limited refuge traffic. We used determine if nest failure was associated with stage of a vehicle or topographic relief to block visibility of incubation as well as describe temporal distribution of activity related to servicing the recording equipment. nest failures. In the former test, nests for which No cranes ever rose from a nest or exhibited any other initiation or termination of incubation was not known significant disturbance as a result of these activities. within 1 day were not included in analysis. In the latter To avoid disturbance of incubating pairs, we did not test, the first certain date of incubation was used as approach attended nests during the course of study. The initiation of incubation; if termination of incubation only 2 exceptions to this protocol were to switch an egg occurred during a range of 2 possible days, the second (later found to be infertile) of a renesting sibling pair date was used. Nests without known termination dates with a viable egg from captivity and to switch an within specific 5-day intervals during the incubation artificial egg with a viable egg recovered from the period were omitted. As above, it was assumed that a previously deserted nest. Beginning in 2006, we nest found with an intact egg had been deserted within collected deserted eggs, within 2-6 hours when the preceding 2 days. possible, and replaced them with wooden (2006-07) or plaster-filled (2007-08) artificial eggs. RESULTS We were able
Recommended publications
  • The Black Flies of Maine
    THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad­ ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten­ sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause.
    [Show full text]
  • Common Loons Respond Adaptively to a Black Fly That Reduces Nesting Success Walter H
    Chapman University Chapman University Digital Commons Biology, Chemistry, and Environmental Sciences Science and Technology Faculty Articles and Faculty Articles and Research Research 6-20-2018 Common Loons Respond Adaptively to a Black Fly that Reduces Nesting Success Walter H. Piper Chapman University, [email protected] Keren B. Tischler Northland College Andrew Reinke University of Wisconsin - Stevens Point Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles Part of the Entomology Commons, Ornithology Commons, Other Animal Sciences Commons, and the Zoology Commons Recommended Citation Piper, W. H., K. B. Tischler, and A. Reinke (2018). Common Loons respond adaptively to a black fly that reduces nesting success. The Auk: Ornithological Advances 135:788–797. DOI: 10.1642/AUK-17-239.1 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Biology, Chemistry, and Environmental Sciences Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Common Loons Respond Adaptively to a Black Fly that Reduces Nesting Success Comments This article was originally published in The Auk: Ornithological Advances, volume 135, in 2018. DOI: 10.1642/ AUK-17-239.1 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Copyright American Ornithological Society This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/sees_articles/202 Volume 135, 2018, pp. 788–797 DOI: 10.1642/AUK-17-239.1 RESEARCH ARTICLE Common Loons respond adaptively to a black fly that reduces nesting success Walter H.
    [Show full text]
  • Entomology I
    MZO-08 Vardhman Mahaveer Open University, Kota Entomology I MZO-08 Vardhman Mahaveer Open University, Kota Entomology I Course Development Committee Chair Person Prof. Ashok Sharma Prof. L.R.Gurjar Vice-Chancellor Director (Academic) Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota Coordinator and Members Convener SANDEEP HOODA Assistant Professor of Zoology School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof . (Rtd.) Dr. D.P. Jaroli Prof. (Rtd.) Dr. Reena Mathur Professor Emeritus Former Head Department of Zoology Department of Zoology University of Rajasthan, Jaipur University of Rajasthan, Jaipur Prof. (Rtd.) Dr. S.C. Joshi Prof. (Rtd.) Dr. Maheep Bhatnagar Department of Zoology Mohan Lal Sukhadiya University University of Rajasthan, Jaipur Udaipur Prof. (Rtd.) Dr. K.K. Sharma Prof. M.M. Ranga Mahrishi Dayanand Saraswati University, Ajmer Ajmer Dr. Anuradha Singh Dr. Prahlad Dubey Rtd. Lecturer Government College Head Department of Zoology Kota Government College , Kota Dr. Subrat Sharma Dr. Anuradha Dubey Lecturer Deputy Director Government College , Kota School of Science and Technology Vardhman Mahaveer Open University, Kota Dr. Subhash Chandra Director (Regional Center) VMOU, Kota Editing and Course Writing Editors Dr. Subhash Chandra SANDEEP HOODA Director ,Regional Center Assistant Professor of Zoology Vardhman Mahaveer Open University ,Kota Vardhman Mahaveer Open University ,Kota Writers: Writer Name Unit No. Writer Name Unit No Ms. Asha Kumari Verma 3,5,8 Dr. Abhishek Rajpurohit 11,13 UGC-NET JRF Department of Assistant Professor Zoology, JNVU, Lachoo Memorial College Jodhpur of Science & Technology,Jodhpur Dr. Neetu Kachhawaha 1,2,4,6,7,12 Dr. Subhash Chandra 14,15 Assistant Professor, Director ,Regional Center Department of Zoology, Vardhman Mahaveer University of Rajasthan ,Jaipur.
    [Show full text]
  • Diptera: Simuliidae) Larvae and Some of Their Potential Macroinvertebrate Predators
    Revista Brasileira de Entomologia 64(3):e20200046, 2020 Preliminary observations on the patterns of co-occurrence of Black fly (Diptera: Simuliidae) larvae and some of their potential macroinvertebrate predators Ronaldo Figueiró1,2,3* , Suzana Silva dos Santos1, Tatiana Nascimento Docile1,4,5, Tayanna Rodrigues da Costa1, Christina de Albuquerque Ferreira, Leonardo Henrique Gil-Azevedo6 1Fundação Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brasil. 2Centro Universitário de Volta Redonda (UNIFOA), Volta Redonda, RJ, Brasil. 3Universidade Castelo Branco (UCB), Rio de Janeiro, RJ, Brasil. 4Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Aplicação Fernando Rodrigues da Silveira (Cap-UERJ), Rio de Janeiro, RJ, Brasil. 5Fundação Oswaldo Cruz (FIOCRUZ), Escola Politécnica de Saúde Joaquim Venâncio, Laboratório de Educação Profissional em Vigilância em Saúde (LAVSA), Rio de Janeiro, RJ, Brasil. 6Universidade Federal do Rio de Janeiro (UFRJ), Museu Nacional, Departamento de Entomologia, Rio de Janeiro, RJ, Brasil. ARTICLE INFO ABSTRACT Article history: Biotic factors such as predation, although important drivers of the black fly community, are rarely investigated Received 19 May 2020 in the literature. This study aimed to test the hypothesis that the patterns of co-occurrence of black fly larvae Accepted 4 August 2020 and its potential predators is not random and that there is a correlation between its frequencies and Simuliidae Available online 4 September 2020 larvae abundances. Larvae were sampled from two localities in the Pedra Branca State Park, Rio de Janeiro, Associate Editor: Gustavo Graciolli Brazil, during the dry season in june 2018. We collected Simulium pertinax Kollar, 1832, Simulium subpallidum Lutz, 1910, Simulium (Inaequalium) sp., Simulium (Psaroniocompsa) sp.
    [Show full text]
  • Distribution Pattern of Black Fly (Diptera: Simuliidae)
    Ya’cob et al. Parasites & Vectors (2016) 9:219 DOI 10.1186/s13071-016-1492-7 RESEARCH Open Access Distribution pattern of black fly (Diptera: Simuliidae) assemblages along an altitudinal gradient in Peninsular Malaysia Zubaidah Ya’cob1*, Hiroyuki Takaoka1, Pairot Pramual2, Van Lun Low1 and Mohd Sofian-Azirun1* Abstract Background: Preimaginal black flies (Diptera: Simuliidae) are important components of the stream ecosystem. However, there has been limited research undertaken on the vertical distribution of preimaginal black flies and their associated ecological factors. Stream conditions are generally variable along the altitudinal gradient. Therefore, we conducted an in-depth entomological survey to investigate the simuliid distribution pattern along an altitudinal gradient in Peninsular Malaysia. Methods: A total of 432 collections were performed in this study (24 samplings at each of 18 fixed-streams at monthly intervals) from February 2012 to January 2014. Larvae and pupae attached on aquatic substrates such as grasses, leaves and stems, twigs, plant roots and rocks were collected by hand using fine forceps. Stream depth (m), width (m), velocity (m/s), water temperature (°C), acidity (pH), conductivity (mS/cm) and dissolved oxygen (mg/L) were measured at the time of each collection. Results: A total of 35 black fly species were recorded in the present study. The most frequently collected species were Simulium tani (31.7 %) and S. whartoni (21.5 %), while the relatively common species were Simulium sp. (nr. feuerborni) (16.2 %), S. decuplum (15.5 %), S. angulistylum (14.8 %), S. bishopi (13.2 %) and S. izuae (11.8 %). Total estimated species richness ranged between 39.8 and 41.3, which yielded more than 80 % of sampling efficiency.
    [Show full text]
  • Alfalfa Survey 2014 Summary
    Alfalfa Survey 2014 Summary ACIDF Project 2014F062R Scott Meers & Heather Leibel Methods From 148 fields in Alberta, 30 alfalfa stems were pattern. Because of the overabundance of insects collected and mines from leaf miners were counted collected and time constraints, only one quarter of the and photographed. The stem length and number of total insects at each site were identified, vialed, and leaves of 10 of each 30 stems was also measured. The tabulated. Insects were identified to order, and in location and abundance of mines in alfalfa leaves some cases further (i.e. alfalfa weevils from other were mapped, and correlation was tested between weevils, leafhoppers from spittlebugs, lygus from abundance of mines and stem length, number of other plant bugs, grasshoppers from katydids, wasps leaves, field size, and percentage of alfalfa. from bees, etc.). The results were graphed by region and mapped by location and abundance. From 150 fields in Alberta, 100 sweeps were collected using a sweep net and 180° sweeping We also vialled and recorded blister beetles, damselflies, stink bugs, and other interesting insects. Table 1. A full list of the insects vialled and recorded: Diptera (flies) Hymenoptera Orthoptera Lepidoptera Neuroptera Thysanoptera Syrphid Bees Grasshoppers Adults Lacewing adults Thrips Leafminer Wasps Katydids Caterpillars Lacewing larvae Other Sawfly larvae Crickets Fly larvae Hemiptera suborders Coleoptera (beetles) Heteroptera (bugs) Auchenorrhyncha Sternorrhyncha Alfalfa weevil adults Lygus adults Leafhopper adults Pea aphid Sitona weevil adults Lygus nymphs Leafhopper nymphs Alfalfa aphid Weevil larvae Alfalfa plant bug adults Spittle bug adults Other aphids Ladybird Alfalfa plant bug nymphs Spittle bug nymphs Parasitized aphids Ladybird larvae Minute pirate bug adult Other Minute pirate bug nymph Black grass bug adult Nabids Twice-stabbed stink bug Other Non-insects Collembola Arachnida Springtails Spiders Opiliones (Harvestmen) Mites Table 2.
    [Show full text]
  • Skin Lesions and Systemic Reactions in Humans Infested by Blackflies
    Journal of Clinical Medicine Article Skin Lesions and Systemic Reactions in Humans Infested by Blackflies (Diptera: Simullidae) in Recreational Areas in Southeastern Poland Monika Sitarz 1, Alicja Buczek 2,* and Weronika Buczek 2 1 Chair and Department of Conservative Dentistry with Endodontics, Faculty of Medical Dentistry, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, 20-080 Lublin, Poland; [email protected] * Correspondence: [email protected] Abstract: Due to their mass occurrence in some environments and high aggressiveness, blackflies (Simulium spp.) represent the most bothersome arthropods attacking humans. In this study, we describe the medical effects of blackfly infestations in humans in southeastern Poland. Local and systemic reactions to blackfly bites were monitored in 418 patients (61.24% of females and 38.76% of males) of medical centers. Only skin lesions at the site of the bites were found in 88.52% of the patients, whereas accompanying systemic reactions were diagnosed in 11.48%. The most common signs observed in the area of the bites were pruritus (94.74%), burning (55.02%), edema (44.02%), and erythema (40.91%). The skin lesions, which were most often grouped small papules and papular and purpuric lesions with a varied range, typically persisted for several days, or for several weeks in some patients. Statistical analyses confirmed that the persistence of the skin lesions did not depend on the sex of the patients and the number of blackfly infestations. The systemic reactions to the components of the blackfly saliva were manifested by headache, increased body temperature, Citation: Sitarz, M.; Buczek, A.; arthralgia, lymphadenopathy, and menstrual disorders in the females.
    [Show full text]
  • Could the Blood Parasite Leucocytozoon Deter Mallard Range Expansion? Author(S): Dave Shutler, C
    Could the Blood Parasite Leucocytozoon Deter Mallard Range Expansion? Author(s): Dave Shutler, C. Davison Ankney, Darrell G. Dennis Source: The Journal of Wildlife Management, Vol. 60, No. 3 (Jul., 1996), pp. 569-580 Published by: Allen Press Stable URL: http://www.jstor.org/stable/3802074 Accessed: 04/12/2008 06:50 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=acg. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Allen Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife Management. http://www.jstor.org COULDTHE BLOODPARASITE LEUCOCYTOZOON DETER MALLARD RANGEEXPANSION? DAVESHUTLER,1 Department of Zoology, Universityof WesternOntario, London, Ontario, N6A 5B7, Canada C.
    [Show full text]
  • Arthropod Pests of Equines
    MP484 Arthropod Pests of Equines University of Arkansas, United States Department of Agriculture and County Governments Cooperating Table of Contents Flies (Order Diptera) . .1 Horse and Deer Flies (Family Tabanidae) . 1 Mosquito (Family Culicidae) . 3 Black Fly (Family Simuliidae) . 4 Biting Midge (Family Ceratopogonidae) . 5 Stable Fly (Family Muscidae) . 5 Horn Fly (Family Muscidae) . 6 Face Fly (Family Muscidae) . 7 House Fly (Family Muscidae) . 7 Horse Bot Fly (Family Gasterophilidae) . 8 Lice (Order Phthiraptera) . 9 Ticks and Mites (Subclass Acari) . .10 Blister Beetles (Order Coleoptera, Family Meloidae) . .12 Authors DR. KELLY M. LOFTIN Associate Professor and Entomologist RICKY F. CORDER Program Associate – Entomology with the University of Arkansas Division of Agriculture located at Cralley-Warren Research Center Fayetteville, Arkansas Arthropod Pests of Equines The list of arthropod pests that irritate, damage Wounds caused by horse fly bites continue to bleed or transmit disease to horses, donkeys and mules is after the fly leaves its host. Horse flies are stout 1 1 substantial. Insect pests in the Order Diptera (true bodied and range from ⁄2 to 1 ⁄4 inches in size. Several flies) include several biting flies (horse and deer flies, species occur in Arkansas. However, the black stable flies, horn flies, biting midges and black flies), (Tabanus atratus Fabricius), black-striped (Hybomitra as well as mosquitoes and horse bots. Lice (Order lasiophthalma Macquart), lined (Tabanus lineola Phthiraptera) are wingless insects that feed on Fabricius) and autumn (Tabanus sulcifrons Macquart) equines during cooler months. Although ticks and are among the most important (Figures 1a-d). Deer mites (Order Acari) are not insects, they are impor­ flies are easily distinguished from horse flies by their 1 3 tant pests in some regions.
    [Show full text]
  • Diptera Families MS FINAL
    The Diptera Families of British Columbia The Diptera Families of British Columbia G.G.E. Scudder and R.A. Cannings March 31, 2006 G.G.E. Scudder and R.A. Cannings Printed 04/25/06 Coleoptera Families of British Columbia Table of Contents Introduction......................................................................................................................................1 Order Diptera Description................................................................................................................3 Keys to Order Diptera and Families.................................................................................................6 Family Descriptions .......................................................................................................................26 Suborder NEMATOCERA............................................................................................................26 Infraorder TIPULOMORPHA .......................................................................................................26 Family TANYDERIDAE (Primitive Crane Flies) [Fig. 1]............................................................26 Family TIPULIDAE (Crane Flies) [Fig. 2]....................................................................................26 Infraorder BLEPHARICEROMORPHA .......................................................................................27 Family BLEPHARICERIDAE (Net-winged Midges) [Fig. 3]......................................................27 Family DEUTEROPHLEBIIDAE (Mountain
    [Show full text]
  • Loon Caller Summer 2012 Vermont Loon Recovery Project a Program of Nongame the Vermont Center for Ecostudies and Wildlife Vermont Fish and Wildlife Department Fund
    Loon Caller Summer 2012 Vermont Loon Recovery Project A program of Nongame the Vermont Center for Ecostudies and Wildlife Vermont Fish and Wildlife Department Fund Conflict avoidance...people and loons A major role of the VLRP is to ramp, I saw two dots by the tiny island “smooth” the way for loons to begin to the north. “Expletive!” This pair nesting on our busy Vermont lakes behaved like the female was going to lay and ponds. It is a combination of an egg immediately as we examined management, education, and PR with their nicely formed nest bowl on the a good dose of intuition and luck. This beach of the tiny island. We left and year’s success story occurred on drove to the town clerk’s office, found a Greenwood Lake but actually started phone number for the owner of the in 2011. The newly re-established loon island, and luckily contacted the owner pair in 2011 built a nest at high water at suppertime asking permission to put in late May on the big island, but then up a small garden fence to “encourage” the water levels dropped leaving the the loons to nest elsewhere. With site out of reach. The pair then started © Margi Swett permission granted, I drove back down nest building on a tiny island occupied Greenwood Lake nesting raft that evening and upset the loons once by a small cottage. The owners came after the eggs disappeared again. I dislike doing this, but I and the loons gave up; we don’t think dismantled the nest bowl with loons eggs had been laid.
    [Show full text]
  • The Black Flies of Minnesota (Simuliidae)
    92 - Technical Bulletin 192 August 1950 The Black Flies of Minnesota (Simuliidae) H. Page Nicholson and Clarence E. Mickel Division of Entomology and Economic Zoology fx° k SOS' cYCC' A University of Minnesota Agricultural Experiment Station The Black Flies of Minnesota (Simuliidae) H. Page Nicholson and Clarence E. Mickel Division of Entomology and Economic Zoology , University of Minnesota Agricultural Experiment Station Submitted for publication September 16, 1949 2500-4-50 TABLE OF CONTENTS Page PART I. Introduction 3 Economic Importance 3 PART II. Biology 6 PART III. Systematic Treatise 13 Methods of Collection 13 Classification 14 Key to genera 14 Genus Prosimulium 17 Key to species 17 P. gibsoni 18 P. hirtipes 20 Genus Cnephia 21 Key to females 22 Key tb males 22 C. dacotense 22 C. mutatum 25 C. invenustum 26 C. species 29 Genus Simu/ium 30 Key to females 32 Key to males 33 S. johannseni 34 S. aureum 37 S. /atipes 40 S. croxtoni 41 S. vittatum 42 S. pictipes 46 S. occidentale 47 S. venustum 48 S. jenningsi subsp. jenningsi 52 S. jenningsi subsp. luggeri 54 S. decorum 55 S. corbis 58 S. rugglesi 60 Summary 61 Literature Cited 62 The Black Flies of Minnesota (Simuliidae) H. Page Nicholson' and Clarence E. Mickel2 PART I. INTRODUCTION THE SIMULIIDAE are known throughout the world as biting pests of man and animals and as transmitters of several disease producing agents. Important contributions to our taxonomic knowledge of the group in North America have been made by Malloch (21), Dyar and Shannon (8), Twinn (39), Stains and Knowlton (32), and Vargas, et a/.( 42 ) ( 43 ).
    [Show full text]