1 the Black Fly (Diptera: Simuliidae) Genome and EST Project

Total Page:16

File Type:pdf, Size:1020Kb

1 the Black Fly (Diptera: Simuliidae) Genome and EST Project The Black Fly (Diptera: Simuliidae) Genome and EST Project Black Fly Genome Consortium Organizing Laboratories: Marine & Aquatic Genetics, Biology,Creighton University, Omaha, NE. (Brockhouse) Center for Genomics and Biotechnology(CGB), Indiana University, Bloomington, IN. (Cobourne) Department of Entomology, Natural History Museum, London, U.K. (Post) Biodiversity of Medically Important Arthropods Laboratory, Clemson University, Clemson, SC. (Adler) Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana, (Wilson, Boakye) Freshwater Ecology Laboratory, University of South Alabama, Mobile, AL. (McCreadie) Abstract: We propose a full genome sequencing project and an accompanying cDNA sequencing project for the Simuliidae (Black Flies). The full genome sequence will be an invaluable resource for the insect genomics community, that will allow order-wide functional genomic comparative analysis of genomic contents and their organization, as well as functional analyses of critical parameters such as insect attributes linked to their capacity to transmit disease agents. These attributes include blood feeding (haematophagy), parasite/pathogen transmission, symbiosis, and insecticide resistance. The EST project is critical to assembling the full genome in the face of the absence of genetic maps and the presence of inversion polymorphisms, and will enormously enhance efforts to genetically map the black fly genome and explore gene regulation, differences among species, and symbiosis. The cDNA project is a critical component of this proposal, to facilitate the annotation of the genome sequence and to produce reliable microarrays that will be used to explore the conservation of transcriptional regulators under conditions that are shared by species that vector the agents of disease. This project aims to make a significant impact in furthering genomic knowledge of vector biology, by promoting comparative research on a disease vector that has close phylogenetic relationships to both mosquitoes (Anopheles, Aedes) and non-haematophagous insects. Biological material will be supplied by participating laboratories (Noblet, Brockhouse, Adler, Post, McCreadie, Wilson, Boakye), while the CGB will carry out the genomic projects in support of the genome sequencing and effort, including cDNA library construction/screening, sequence assembly validations, EST characterization, and related bioinformatics. The principal investigators will solicit the involvement of a growing insect genomics research community for the overall analysis and annotation. The resulting database will be incorporated into VectorBase and within the proposed InsectBase. 1) Justification for Sequencing the Black Fly Genome. Family Simuliidae: Importance to Humans and the Environment Black flies are generally regarded as the second most pernicious group of insects that afflict the health and economic well-being of humans (Adler et al., 2004). The blood-feeding activity of the adult females transmits a variety of pathogens, notably Onchocerca, Leucocytozoon, Mansonella, Trypanosoma, and Dirofilaria (Adler, 2005) Onchocerca volvulus alone infects approximately 19 million people on two continents, and has been the focus of one of the World Health Organization’s largest programs (Onchocerciasis Control Programme). 1 In spite of these associated pathogens, much of the negative impact of black flies is not due to transmission of disease agents, but to the effects of sheer mass biting. In the northern hemisphere, vast areas are rendered nearly uninhabitable due to the biting rates (Adler et al., 2004). This is also true of developing countries in the tropics, where biting nuisance is recognized as a major barrier to economic development (Huggard et al., 1998). Ironically, while the adult females pose an enormous burden to human well being, the larvae are keystone species in rivers and constitute an essential ecological resource. Black fly larvae are aquatic filter feeders and are able to capture material classified as “dissolved organic matter” (DOM, in ecological parlance). This material is available to few other macroinvertebrates. As a result, this material becomes available to other macroinvertebrates and other organisms which feed either directly on the black flies or on their fecal pellets (Malmqvist, 2004). Despite the medical and ecological importance of black flies, progress on simuliid molecular biology has been slow. This is largely due to the tremendous difficulty in creating and maintaining laboratory colonies. Only one colony of a single species (Simulium vittatum) currently exists at the University of Georgia (Athens). As a consequence, the bulk of work must be conducted using wild-collected material from populations that are highly polymorphic, often of mixed species, and often parasitized or carrying poorly characterized symbionts and pathogens (for review of black fly pathogens see Crosskey, 1990). Black Flies (The Simuliidae): A Window on the Mosquito Genome. Although significant pests in their own right, black flies pale in comparison to mosquitoes as vectors of disease agents, especially with respect to the range of pathogens transmitted. (several of the mosquito-borne pathogens have been listed as bio-terror agents). A great deal of the vectorial capacity of mosquitoes is due to the simple mechanics of blood-feeding: mosquito mouthparts actually travel into the capillaries to imbibe blood, whereas black flies are pool-feeders that slash the skin and lap the oozing blood; pathogens are more directly inoculated into the host by the hypodermic mechanism of mosquitoes than through the lapping action of simuliids (cf. Clements, 1999; Crosskey, 1990). Given the potential number of mosquito species (>3500) available as vectors, it is not feasible to completely sequence all potentially important haematophagous mosquito genomes. By using an appropriate “outgroup” to the three existing mosquito genome projects, however, it is possible to construct a “consensus” view of the mosquito genome. The black fly genome provides the perfect “outgroup” with which to better understand the mosquito genome. Black flies are members of the Culicimorpha, allied to mosquitoes, but separated from them by several other families (Wood and Borkent, 1989). They are taxonomically closer to the culicids than are other dipterans with sequenced genomes (e.g. the drosophilids), and significantly the Culicidae and Simuliidae have startling parallels in their biology, many of which are independently derived. For example, both mosquitoes and simuliids have obligatory aquatic larvae, both groups are female-hematophagous (possibly independently derived; Black and Kondratieff, 2005), and both include members that have secondarily abandoned blood-feeding in either an obligatory or facultative manner. The females of both groups exhibit complex host-seeking behavior involving visual and olfactory cues. The list of parallels continues: insecticide resistance is a significant problem in black flies and mosquitoes, both exhibit inter- and intra-specific variation in vectorial capacity, and both have a propensity for sibling species, which pose great taxonomic and genetic challenges. Parallel development of many of these traits presents a sterling opportunity for genome-wide 2 searches for selection. Selection leaves imprints on the genome (e.g., differential mutation rates between silent and non-silent sites) that allows the detection of genes involved in the processes being examined (e.g., Savard et al., 2006; Steinke et al., 2006). Having the full gene inventories is also useful to detect lineage-specific gene family expansions (or reductions) as a function of the organisms’ biology. By obtaining the fully characterized simuliid genome, rather than just partial sequences or ESTs alone, the wider dipteran and arthropod genomics communities will be able to engage in functional genomic studies, focusing on haematophagy and ecological traits at the family level, for example. 2) No Member of the Simuliidae is Currently the Focus of a Genome Project. In spite of the very early beginnings of black fly molecular biology (Teshima, 1972; Sohn et al., 1975), no black fly genome has been sequenced nor has another proposal been made to sequence a black fly genome to our knowledge. However, a BAC library is currently being prepared from S. squamosum (a member of the S. damnosum complex and a vector of onchocerciasis) by the Post laboratory. This library will be available for the genome sequencing project. 3) Interest to the Scientific Community The community of black fly workers includes representation on all the populated continents, and is represented by three major professional organizations (North American Black Fly 4 Association, British Simuliid Group, and the European Simuliid Symposium Group.) The North American and British groups meet annually, and the European group every two years, with international meetings held periodically (the September 2006 Novi Sad meeting was the 5th such meeting). Approximately 250 laboratories worldwide either focus on simuliids or include black flies as a major part of their research program. Additionally, black flies have been used for comparative purposes by workers concentrating on other taxa, most notably mosquitoes (e.g., Edwards et al., 1997; Pennington et al., 2002) Specific participants from the black fly community include Brockhouse (Creighton University), Adler (Clemson University), McCreadie (University of South Alabama), Post (Natural History
Recommended publications
  • The Black Flies of Maine
    THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad­ ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten­ sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause.
    [Show full text]
  • DNA Barcoding Distinguishes Pest Species of the Black Fly Genus <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 11-2013 DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) I. M. Confitti University of Toronto K. P. Pruess University of Nebraska-Lincoln A. Cywinska Ingenomics, Inc. T. O. Powers University of Nebraska-Lincoln D. C. Currie University of Toronto and Royal Ontario Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Confitti, I. M.; Pruess, K. P.; Cywinska, A.; Powers, T. O.; and Currie, D. C., "DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae)" (2013). Faculty Publications: Department of Entomology. 616. http://digitalcommons.unl.edu/entomologyfacpub/616 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MOLECULAR BIOLOGY/GENOMICS DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) 1,2 3 4 5 1,2,6 I. M. CONFLITTI, K. P. PRUESS, A. CYWINSKA, T. O. POWERS, AND D. C. CURRIE J. Med. Entomol. 50(6): 1250Ð1260 (2013); DOI: http://dx.doi.org/10.1603/ME13063 ABSTRACT Accurate species identiÞcation is essential for cost-effective pest control strategies. We tested the utility of COI barcodes for identifying members of the black ßy genus Cnephia Enderlein (Diptera: Simuliidae). Our efforts focus on four Nearctic Cnephia speciesÑCnephia dacotensis (Dyar & Shannon), Cnephia eremities Shewell, Cnephia ornithophilia (Davies, Peterson & Wood), and Cnephia pecuarum (Riley)Ñthe latter two being current or potential targets of biological control programs.
    [Show full text]
  • Review and Phylogeny of Lutzsimulium (Diptera: Simuliidae)
    ZOOLOGIA 27 (5): 761–788, October, 2010 doi: 10.1590/S1984-46702010000500014 Review and phylogeny of Lutzsimulium (Diptera: Simuliidae) Leonardo H. Gil-Azevedo Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Simulídeos e Oncocercose. Avenida Brasil 4365, Manguinhos, Caixa Postal 926, 21045-900 Rio de Janeiro, RJ, Brazil. E-mail: [email protected] ABSTRACT. Lutzsimulium d’Andretta Jr & Vulcano, 1947 is an enigmatic South American genus with four species: L. flavopubescens Lutz, 1910, L. hirticosta Lutz, 1909, L. pernigrum Lutz, 1910 and L. simplicicolor Lutz, 1910. It can be diagnosed by median arms of furcasternum with projections; subbasal tooth of the claw reduced; wing basal cell absent; spermatheca with net-like structure; apex of trichomes coiled (pupa); gill with two main trunks (pupa); antennomere 3 equal to or longer than 1+2 (larva); hypostomal teeth reduced (larva); postgenal cleft deep (larva). A morphological cladistic analysis under equal weights, with the four Lutzsimulium species and six outgroups, resulted in two most parsimonious trees, with 81 steps, CI = 0.61 and RI = 0.68. The monophyly of the genus is corroborated, supported by 15 synapomorphies, therefore it is proposed that Kempfsimulium Py-Daniel & Nunes de Mello, 1982 is synonymous of Lutzsimulium. Also the status of Araucnephia Wygodzinsky & Coscarón, 1973 and Araucnephioides Wygodzinsky & Coscarón, 1973 are revalidated, because they do not form a monophyletic group with Lutzsimulium. All the species of Lutzsimulium are revised, with redescriptions, illustrations and identification keys for adults, pupa and larva. The male and larva of L. flavopubescens are described for the first time. KEY WORDS. Argentina; black-fly; Brazil; cladistics; Culicomorpha; Insecta; Neotropical Region; taxonomy.
    [Show full text]
  • Black-Flies and Leucocytozoon Spp. As Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada
    Black-flies and Leucocytozoon spp. as Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada D. Bruce Hunter1, Christoph Rohner2, and Doug C. Currie3 ABSTRACT.—Black fly feeding and infection with the blood parasite Leucocytozoon spp. caused mortality in juvenile Great Horned Owls (Bubo virginianus) in the Yukon, Canada during 1989-1990. The mortality occurred during a year of food shortage corresponding with the crash in snowshoe hare (Lepus americanus) populations. We postulate that the occurrence of disease was mediated by reduced food availability. Rohner (1994) evaluated the numerical re- black flies identified from Alaska, USA and the sponse of Great Horned Owls (Bubo virginianus) Yukon Territory, Canada, 36 percent are orni- to the snowshoe hare (Lepus americanus) cycle thophilic, 39 percent mammalophilic and 25 from 1988 to 1993 in the Kluane Lake area of percent autogenous (Currie 1997). Numerous southwestern Yukon, Canada. The survival of female black flies were obtained from the car- juvenile owls was very high during 1989 and casses of the juvenile owls, but only 45 of these 1990, both years of abundant hare populations. were sufficiently well preserved for identifica- Survival decreased in 1991, the first year of the tion. They belonged to four taxa as follows: snowshoe hare population decline (Rohner and Helodon (Distosimulium) pleuralis (Malloch), 1; Hunter 1996). Monitoring of nest sites Helodon (Parahelodon) decemarticulatus combined with tracking of individuals by radio- (Twinn), 3; Simulium (Eusimulium) aureum Fries telemetry provided us with carcasses of 28 ju- complex, 3; and Simulium (Eusimulium) venile owls found dead during 1990 and 1991 canonicolum (Dyar and Shannon) complex, 38 (Rohner and Doyle 1992).
    [Show full text]
  • MORPHOLOGY of the DIGESTIVE TRACT of the BLACKFLY (SIMULIUM NIGROPARVUM)I
    MORPHOLOGY OF THE DIGESTIVE TRACT OF THE BLACKFLY (SIMULIUM NIGROPARVUM)i By JAMES A. Cox Assistant entomologist, Virginia Agricultural Experiment Station INTRODUCTION Comparatively little information exists in the literature relative to the internal anatomy of the family Simuliidae. Hungerford {6y has figured and described the internal anatomy of Simulium vittatum Zett., and Smart (ii) in a recent paper has described the internal anatomy of S. ornatum Mg. In recent years it has been found that certain species of blackflies transmit disease-producing organisms. Blacklock (Í, 2) has demon- strated that simulium damnosum Theob. is an intermediate host of a filarial worm Onchocerca volvulus Leuckart, which causes a disease of man. O'Roke (10) has shown that a blood protozoon of ducks, Leucocytozoon anatis Wickware, passes the sexual stage of its Hfe cycle in Simulium venustum Say and that the organism is transmitted by the bite of the fly. During the past 2 years the blackfly Simulium nigroparvum Twinn has been found feeding on turkeys in southwestern Virginia, and Johnson and Underbill (8) have shown that this fly is responsible for the transmission of a blood protozoon disease of turkeys. In view of the recent discovery that S, nigroparvum is an important vector of this blood protozoon of turkeys, the writer felt that a detailed study of the internal anatomy of the fly would be of service in studying the life history of the protozoon. Specimens of S. nigro- parmm were readily accessible, and a detailed study was made of the internal morphology of this fly. Since only the females feed on turkeys and the males are unimportant as possible vectors, the digestive tract of the female only is described.
    [Show full text]
  • Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 37–46Checklist (2014) of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae... 37 doi: 10.3897/zookeys.441.7532 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland Jukka Salmela1, Lauri Paasivirta2, Gunnar M. Kvifte3 1 Metsähallitus, Natural Heritage Services, P.O. Box 8016, FI-96101 Rovaniemi, Finland 2 Ruuhikosken- katu 17 B 5, 24240 Salo, Finland 3 Department of Limnology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel-Oberzwehren, Germany Corresponding author: Jukka Salmela ([email protected]) Academic editor: J. Kahanpää | Received 17 March 2014 | Accepted 22 May 2014 | Published 19 September 2014 http://zoobank.org/87CA3FF8-F041-48E7-8981-40A10BACC998 Citation: Salmela J, Paasivirta L, Kvifte GM (2014) Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 37–46. doi: 10.3897/zookeys.441.7532 Abstract A checklist of the families Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) recorded from Finland is given. Four species, Dixella dyari Garret, 1924 (Dixidae), Threticus tridactilis (Kincaid, 1899), Panimerus albifacies (Tonnoir, 1919) and P. przhiboroi Wagner, 2005 (Psychodidae) are reported for the first time from Finland. Keywords Finland, Diptera, species list, biodiversity, faunistics Introduction Psychodidae or moth flies are an intermediately diverse family of nematocerous flies, comprising over 3000 species world-wide (Pape et al. 2011). Its taxonomy is still very unstable, and multiple conflicting classifications exist (Duckhouse 1987, Vaillant 1990, Ježek and van Harten 2005).
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Diptera: Nematocera) of the Piedmont of the Yungas Forests of Tucuma´N: Ecology and Distribution
    Ceratopogonidae (Diptera: Nematocera) of the piedmont of the Yungas forests of Tucuma´n: ecology and distribution Jose´ Manuel Direni Mancini1,2, Cecilia Adriana Veggiani-Aybar1, Ana Denise Fuenzalida1,3, Mercedes Sara Lizarralde de Grosso1 and Marı´a Gabriela Quintana1,2,3 1 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuma´n, Instituto Superior de Entomologı´a “Dr. Abraham Willink”, San Miguel de Tucuma´n, Tucuma´n, Argentina 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, San Miguel de Tucuma´n, Tucuma´n, Argentina 3 Instituto Nacional de Medicina Tropical, Puerto Iguazu´ , Misiones, Argentina ABSTRACT Within the Ceratopogonidae family, many genera transmit numerous diseases to humans and animals, while others are important pollinators of tropical crops. In the Yungas ecoregion of Argentina, previous systematic and ecological research on Ceratopogonidae focused on Culicoides, since they are the main transmitters of mansonelliasis in northwestern Argentina; however, few studies included the genera Forcipomyia, Dasyhelea, Atrichopogon, Alluaudomyia, Echinohelea, and Bezzia. Therefore, the objective of this study was to determine the presence and abundance of Ceratopogonidae in this region, their association with meteorological variables, and their variation in areas disturbed by human activity. Monthly collection of specimens was performed from July 2008 to July 2009 using CDC miniature light traps deployed for two consecutive days. A total of 360 specimens were collected, being the most abundant Dasyhelea genus (48.06%) followed by Forcipomyia (26.94%) and Atrichopogon (13.61%). Bivariate analyses showed significant differences in the abundance of the genera at different sampling sites and climatic Submitted 15 July 2016 Accepted 4 October 2016 conditions, with the summer season and El Corralito site showing the greatest Published 17 November 2016 abundance of specimens.
    [Show full text]
  • Diptera) of Finland 91 Doi: 10.3897/Zookeys.441.7600 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441: 91–95 (2014) Checklist of the family Simuliidae (Diptera) of Finland 91 doi: 10.3897/zookeys.441.7600 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Simuliidae (Diptera) of Finland Jari Ilmonen1 1 Metsähallitus Natural Heritage Services, Vantaa, Finland Corresponding author: Jari Ilmonen ([email protected]) Academic editor: J. Kahanpää | Received 27 March 2014 | Accepted 19 June 2014 | Published 19 September 2014 http://zoobank.org/A50A1040-C3AB-4B83-BB4A-9A5166B183B9 Citation: Ilmonen J (2014) Checklist of the family Simuliidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 91–95. doi: 10.3897/zookeys.441.7600 Abstract A checklist of the family Simuliidae (Diptera) is provided for Finland and recognizes 56 species. One new record has been added (Simulium latipes) and one name sunken in synonymy (Simulium carpathicum). Furthermore, Simulium tsheburovae is treated as a doubtful record. Keywords Checklist, Finland, Diptera, Simuliidae Introduction Simuliidae is a relatively small family of nematoceran flies, comprised of 2,163 species (2,151 living and 12 fossil) world-wide (Adler and Crosskey 2014). Numerous taxo- nomical confusions and different views on nomenclature between eastern and western scientists have created confusion in blackfly studies for many decades. Some taxonomi- cal issues concerning species occurring in North Europe have been resolved by recent synonymisations (Raastad et al. 2010, Adler and Crosskey 2014). Systematics and nomenclature of the enumeration follow that of Adler and Crosskey (2014), and only the most relevant synonyms used in previous checklists for Finland are listed.
    [Show full text]
  • Structure of the Coxa and Homeosis of Legs in Nematocera (Insecta: Diptera)
    Acta Zoologica (Stockholm) 85: 131–148 (April 2004) StructureBlackwell Publishing, Ltd. of the coxa and homeosis of legs in Nematocera (Insecta: Diptera) Leonid Frantsevich Abstract Schmalhausen-Institute of Zoology, Frantsevich L. 2004. Structure of the coxa and homeosis of legs in Nematocera Kiev-30, Ukraine 01601 (Insecta: Diptera). — Acta Zoologica (Stockholm) 85: 131–148 Construction of the middle and hind coxae was investigated in 95 species of Keywords: 30 nematoceran families. As a rule, the middle coxa contains a separate coxite, Insect locomotion – Homeotic mutations the mediocoxite, articulated to the sternal process. In most families, this coxite – Diptera – Nematocera is movably articulated to the eucoxite and to the distocoxite area; the coxa is Accepted for publication: radially split twice. Some groups are characterized by a single split. 1 July 2004 The coxa in flies is restricted in its rotation owing to a partial junction either between the meron and the pleurite or between the eucoxite and the meropleurite. Hence the coxa is fastened to the thorax not only by two pivots (to the pleural ridge and the sternal process), but at the junction named above. Rotation is impossible without deformations; the role of hinges between coxites is to absorb deformations. This adaptive principle is confirmed by physical modelling. Middle coxae of limoniid tribes Eriopterini and Molophilini are compact, constructed by the template of hind coxae. On the contrary, hind coxae in all families of Mycetophiloidea and in Psychodidae s.l. are constructed like middle ones, with the separate mediocoxite, centrally suspended at the sternal process. These cases are considered as homeotic mutations, substituting one structure with a no less efficient one.
    [Show full text]
  • Fly Times 59
    FLY TIMES ISSUE 59, October, 2017 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! As usual, I thank everyone for sending in such interesting articles. I hope you all enjoy reading it as much as I enjoyed putting it together. Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community for the next issue. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the associated digital images you wish to provide. This is also a great placeto report on your interesting (and hopefully fruitful) collecting activities! Really anything fly-related is considered. And of course, thanks very much to Chris Borkent for again assembling the list of Diptera citations since the last Fly Times! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. For this issue, I want to again thank all the contributors for sending me such great articles! Feel free to share your opinions or provide ideas on how to improve the newsletter.
    [Show full text]
  • Diptera of Tropical Savannas - Júlio Mendes
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes DIPTERA OF TROPICAL SAVANNAS Júlio Mendes Institute of Biomedical Sciences, Uberlândia Federal University, Brazil Keywords: disease vectors, house fly, mosquitoes, myiasis, pollinators, sand flies. Contents 1. Introduction 2. General Characteristics 3. Classification 4. Suborder Nematocera 4.1. Psychodidae 4.2. Culicidae 4.3. Simullidae 4.4. Ceratopogonidae 5. Suborder Brachycera 5.1. Tabanidae 5.2. Phoridae 5.3. Syrphidae 5.4. Tephritidae 5.5. Drosophilidae 5.6. Chloropidae 5.7. Muscidae 5.8. Glossinidae 5.9. Calliphoridae 5.10. Oestridae 5.11. Sarcophagidae 5.12. Tachinidae 6. Impact of human activities upon dipterans communities in tropical savannas. Glossary Bibliography Biographical Sketch UNESCO – EOLSS Summary Dipterous are a very much diversified group of insects that occurs in almost all tropical habitats and alsoSAMPLE other terrestrial biomes. Some CHAPTERS diptera are important from the economic and public health point of view. Mosquitoes and sandflies are, respectively, vectors of malaria and leishmaniasis in the major part of tropical countries. Housefly and blowflies are mechanical vectors of many pathogens, and the larvae of the latter may parasitize humans and other animals, as well. Nevertheless, the majority of diptera are inoffensive to humans and several of them are benefic, having important roles in nature such as pollinators of plants, recyclers of decaying organic matter and natural enemies of other insects, including pests. 1. Introduction ©Encyclopedia of Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes Diptera are a very diverse and abundant group of insects inhabiting almost all habitats throughout the world.
    [Show full text]