Landscape and Garden Weed Control

Total Page:16

File Type:pdf, Size:1020Kb

Landscape and Garden Weed Control extension.usu.edu LANDSCAPE AND GARDEN WEED CONTROL Steven Dewey, Extension Weed Specialist Dan Drost, Extension Vegetable Specialist Larry Rupp, Extension Ornamental Horticulture Specialist Larry Sagers, Extension Horticulturist April 1997 HG 508 TABLE OF CONTENTS Introduction...................................................................... 1 Herbicide Application Equipment...................................................... 1 Sprayer Calibration ................................................................ 2 Lawn Weed Control ............................................................... 4 Weed Control Methods ....................................................... 4 List of Lawn Herbicides ...................................................... 5 Weed Response to Lawn Herbicides . 6 Lawn Herbicide Descriptions................................................... 7 Ornamental Weed Control .......................................................... 10 List of Ornamental Herbicides ................................................. 11 Weed Response to Ornamental Herbicides . 12 Ornamental Herbicide Descriptions . 13 Vegetable Garden Weed Control ..................................................... 18 Weed Control Methods ...................................................... 18 Vegetable Garden Herbicide Descriptions . 19 Weed Control in Fruit Trees, Grapes, and Berries . 21 Weed Control in Parking Areas and Driveways . 24 Brush, Tree, and Stump Removal..................................................... 25 Chemical Names of Selected Active Ingredients . 26 General Rules for Weed Control ..................................................... 27 ALWAYS READ THE LABEL Always read and follow precisely all instructions on the label when using any herbicide product. To do otherwise is a violation of federal law. Sometimes products containing the same active ingredient(s) will specify different uses, restrictions, etc. INTRODUCTION Weeds around the home are a general or injury. Often a veterinarian is needed to nuisance, mar the natural beauty of a landscape, remove the seeds. and decrease the value or marketability of Weeds cost Utah farmers millions of dollars residential properties. Weeds ruin lawns, each year in damage to both crops and livestock. gardens, and flowerbeds. Some weeds even grow The consumer pays more for food because of through blacktop. Weeds may cause hayfever, be these losses. a fire hazard, and harbor insects or diseases. Much of the damage caused by weeds They cause flat tires, puncture bare feet, and around homes can be prevented, but considerable cause skin irritation. effort is required. Persistence and patience are Pets also are affected by weeds. Seeds or the keys to successful weed control. burs tangled in a pet’s hair are unsightly and This pamphlet will help you identify those irritating. Sharp or barbed weed seeds may enter techniques and tools most effective in managing their ears, nose, or eyes causing great discomfort your own landscape and garden weeds. HERBICIDE APPLICATION EQUIPMENT There are several types of sprayers suitable (similar to window cleaner spray bottles). They for residential weed control. They range from are used for spot treating small areas or inexpensive plastic sprayers to elaborate and individual weeds. expensive power sprayers. To find a sprayer suitable for your situation, HOSE END SPRAYERS: choose one that is dependable and gives the These sprayers attach to the end of a garden coverage needed. hose and are acceptable for insecticides, but are Do not to use the same sprayer for both not recommended for herbicides. They are insect and weed control. Some herbicides such as difficult to calibrate and do not apply herbicides 2,4-D are difficult to completely remove from uniformly. sprayers. Damage to desirable plants could result from a herbicide-contaminated sprayer used to COMPRESSED AIR SPRAYERS: apply insecticides. If you decide to use the same One to three-gallon canister compressed air sprayer, wash it with detergent after herbicide use. sprayers are the most common sprayers used by Then fill the tank and prime the system with a homeowners. Some are made of metal, but solution of 1 pint of household ammonia in 10 plastic models are effective and less expensive. pints of water and let stand. After 12 to 24 hours, rinse and purge the sprayer several times with BACKPACK SPRAYERS: clean water to totally remove ammonia solution. There are several models of backpack sprayers on the market. These are usually more HAND SPRAY BOTTLES: expensive than canister sprayers, but are more Several herbicides now come ready-to-use versatile. They have up to a 5 gallon capacity (RTU) in disposable applicator spray bottles and maintain a more uniform pressure. 1 POWER SPRAYERS: WICK-WIPERS: If you have large areas to spray, a power Various makes and models of “wiper” sprayer can be a good investment. These sprayers applicators are available, primarily for use in have a pump and regulator that provide constant applying herbicides like Roundup. A herbicide- pressure, and deliver a more uniform spray soaked sponge or other absorbent material in the pattern. Some models are designed to mount on a applicator tool allows direct and accurate 4-wheel ATV or small garden tractor. placement of herbicide on unwanted plants, without the hazard of spray drift. SPRAYER CALIBRATION CALIBRATION OF YOUR SPRAYER IS ESSENTIAL Many people do not calibrate their sprayers, (ounces) the water in the bucket. This and then wonder why they do not obtain good represents the amount of liquid solution weed control. Calibration is easy. The following your sprayer will deliver on a 1000 method will work for any kind of hand-held square foot area. sprayer. Step 5. Empty your sprayer, then refill it with Step 1. Select an open flat area (such as the lawn the amount of water needed to cover or driveway) for a sprayer calibration 1,000 square feet. From instructions on plot. Measure an area 25 feet wide by 40 the herbicide label, determine the amount feet long (1,000 square feet). Use a of herbicide concentrate that is to be string or garden hose to mark the borders applied on 1,000 square feet. Add that of your plot. amount to the water in the sprayer. Mix the herbicide and water together Step 2. Using clean water only (no herbicide), thoroughly. You are now ready to spray uniformly spray the entire calibration a 1,000 square foot area for weed plot. Walk the same speed and use the control. same sprayer pressure and settings as you will later when actually spraying Example: If you used 128 ounces of with herbicide. Remember, you only need water to spray your calibration plot, and to lightly wet the plants. Don’t spray to if the herbicide label said to apply 3 the point that water drips off. ounces of herbicide concentrate per 1,000 square feet, you would put 125 Record the time it takes to spray the ounces of water into your sprayer and calibration area. add 3 ounces of herbicide concentrate (for a total of 128 ounces), and then Step 3. Repeat step 2 until your spray times spray that mixture on a 1,000 square becomes fairly consistent (plus or minus foot area. 10 percent of the average time it takes to spray the area). (Note: If your sprayer capacity is large enough, you may add two or three times Step 4. Refill the sprayer with water and spray the amount of both water and herbicide into an empty bucket for the average concentrate needed per 1,000 square feet. amount of time it took to spray the This allows you to spray 2,000 or 3,000 calibration plot. Collect and measure square feet between refills.) 2 Step 6. Apply the spray solution (water + settings). Check yourself periodically to make herbicide) exactly as you sprayed your sure you are covering the correct square footage calibration plot (use same walking speed, with each spray load. sprayer pressure, and equipment If a herbicide label recommendation is in gallons or pounds per acre, use Table 1 to convert to amount per 1,000 square feet. Table l. Conversion of Herbicide Rate/Acre to Rate/1,000 Square Feet. LIQUID MATERIALS Rate of Commercial Formulation Per Acre Approximate Rate Per 1,000 Square Feet 1 pint ¾ tablespoon 1 quart 1½ tablespoons 2 quarts 3 tablespoons 1 gallon 6 tablespoons DRY MATERIALS Rate of Commercial Formulation Per Acre Approximate Rate Per 1,000 Square Feet Wettable Powder Granular Materials 1 pound 5 teaspoons 2 ¼ teaspoons 2 pounds 3 tablespoons 4 ½ teaspoons 3 pounds 5 tablespoons 2 ¼ tablespoons 4 pounds 6 tablespoons 3 tablespoons 5 pounds 8 tablespoons 4 tablespoons 10 pounds 1 cup ½ cup 100 pounds 5 cups TABLE OF USEFUL EQUIVALENTS Liquid Dry 1 gallon = 4 quarts = 128 ounces 1 pound = 16 ounces = 454 grams 1 quart = 2 pints = 32 ounces 1 ounce = 28.25 grams 1 pint = 2 cups = 16 ounces 1 tablespoon = 3 teaspoons 16 tablespoons = 1 cup = 8 ounces Area 1 ounce = 29.5 milliliters 1 acre = 43,560 square feet 1 tablespoon = 15 milliliters = ½ ounce 3 LAWN WEED CONTROL WEED CONTROL METHODS A smooth, dark green, weed-free lawn adds 4. Irrigation to a beautiful landscape. Follow these basic Water according to weather and soil type. A management practices to create quality turf mostly-clay soil would probably do well with one areas. watering per week. Sandier soils may need two or three waterings per week. Allow the top half inch of soil to dry out between waterings to PROMOTE HEALTHY LAWN discourage weed seed germination. Light, frequent waterings encourage weed growth. 1. Weed-free Seed The sources of weed contamination in lawn CONTROL
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Redox Imbalance Caused by Pesticides: a Review of OPENTOX-Related Research
    Marjanović Čermak AM, et al. Redox imbalance caused by pesticides Arh Hig Rada Toksikol 2018;69:126-134 126 Review DOI: 10.2478/aiht-2018-69-3105 Redox imbalance caused by pesticides: a review of OPENTOX-related research Ana Marija Marjanović Čermak, Ivan Pavičić, and Davor Želježić Institute for Medical Research and Occupational Health, Zagreb, Croatia [Received in February 2018; Similarity Check in February 2018; Accepted in May 2018] Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific project “Organic pollutants in environment – markers and biomarkers of toxicity (OPENTOX)” is dedicated to studying toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation of our own findings from studies conducted onin vitro cell models. KEY WORDS: antioxidants; apoptosis; glyphosate; in vitro; neonicotinoids; organophosphates; oxidative stress; pyrethroids; reactive oxygen species Over the years, population growth and changes in food (HrZZ), is dedicated to studying the toxic effects of two consumption patterns have challenged agricultural major pesticide classes with three subgroups each: (A) production to meet the demand for food and quality insecticides (organophosphates, neonicotinoids, and standards.
    [Show full text]
  • US Environmental Protection Agency Office of Pesticide Programs
    US Environmental Protection Agency Office of Pesticide Programs Reregistration Eligibility Decision for Prometon March 25, 2008 United States Prevention, Pesticides EPA 738-R-08-004 Environmental Protection and Toxic Substances Agency (7508P) Reregistration Eligibility Decision for Prometon TABLE OF CONTENTS GLOSSARY OF TERMS AND ABBREVIATIONS............................................................................... 4 I. INTRODUCTION.............................................................................................................................. 5 II. CHEMICAL OVERVIEW................................................................................................................ 6 A. REGULATORY HISTORY ................................................................................................................... 6 B. CHEMICAL IDENTIFICATION............................................................................................................. 6 C. USE PROFILE .................................................................................................................................... 7 D. ESTIMATED USAGE OF PESTICIDE.................................................................................................... 8 III. SUMMARY OF PROMETON RISK ASSESSMENTS............................................................. 9 A. HUMAN HEALTH RISK ASSESSMENT ............................................................................................... 9 1. Toxicity of Prometon..................................................................................................................
    [Show full text]
  • Pesticide Contamination Prevention Program Report A.R.S
    Pesticide Contamination Prevention Program Report A.R.S. 49-303.C § The Arizona Pesticide Contamination Prevention Program was established by the Environmental Quality Act of 1986. The major objective of the program is to prevent or mitigate groundwater pollution by agricultural pesticides. The program is composed of the following four major components: 1) Product chemistry and environmental fate review – Prior to registering an agricultural-use pesticide with the Arizona Department of Agriculture (ADA), applicants must submit product chemistry and environmental fate data of the associated active ingredient to ADEQ for review and approval. The information is used to determine the potential of the active ingredient to leach to groundwater, and generate the Arizona Groundwater Protection List (GWPL). 2) Groundwater Protection List – The GWPL is a list of agricultural pesticides in use in Arizona and their active ingredients that have the potential to pollute groundwater, based on product chemistry and environmental fate data and groundwater monitoring of the active ingredient(s). 3) Environmental monitoring – ADEQ, in cooperation with the ADA, monitors groundwater and soils in agricultural areas throughout the state for the presence of agricultural-use pesticide active ingredients on the GWPL. 4) Compilation of data – ADEQ collects and reports product use information for agricultural pesticides applied to the soil on the GWPL. Results of pesticide monitoring for ground-water wells are evaluated and stored in the Water Quality Division’s groundwater database. This report which covers calendar year 2011 is in fulfillment of a requirement pursuant to A.R.S. § 49- 303.C that requires ADEQ to report the following information to the Legislature annually: 1) A list of agricultural-use pesticide active ingredient for which there is a groundwater protection data gap (A.R.S.
    [Show full text]
  • AP-42, Vol. 1, Final Background Document for Pesticide Application
    Emission Factor Documentation for AP-42 Section 9.2.2 Pesticide Application Final Report For U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Inventory Branch EPA Contract No. 68-D2-0159 Work Assignment No. I-08 MRI Project No. 4601-08 September 1994 Emission Factor Documentation for AP-42 Section 9.2.2 Pesticide Application Final Report For U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Inventory Branch Research Triangle Park, NC 27711 Attn: Mr. Dallas Safriet (MD-14) Emission Factor and Methodology EPA Contract No. 68-D2-0159 Work Assignment No. I-08 MRI Project No. 4601-08 September 1994 NOTICE The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Contract No. 68-D2-0159 to Midwest Research Institute. It has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. iii iv PREFACE This report was prepared by Midwest Research Institute (MRI) for the Office of Air Quality Planning and Standards (OAQPS), U.S. Environmental Protection Agency (EPA), under Contract No. 68-D2-0159, Assignment No. 005 and I-08. Mr. Dallas Safriet was the EPA work assignment manager for this project. Approved for: MIDWEST RESEARCH INSTITUTE Roy M. Neulicht Program Manager Environmental Engineering Department Jeff Shular Director, Environmental Engineering Department September 29, 1994 v vi CONTENTS LIST OF FIGURES ................................................ viii LIST OF TABLES ................................................
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • PESTICIDE SCREEN 07 Method: USDA R33D Rush Available 2X List
    PESTICIDE SCREEN 07 Method: USDA R33D Rush Available 2x list Acephate(Orthene) Cycluron Fenpropidin Acetamiprid Cymiazole (Hydrochloride) Fenpyroximate Alanycarb Cymoxanil Fenuron Aldicarb (Temic) Cyproconazole Fipronil Amidosulfuron Cyprodinil Flazasulfuron Aminocarb DEET Flonicamid Azaconazole Desmedipham Fluazinam Azamethiphos Diazinon Flubendiamide Azinphos‐ethyl Dichlorvos (DDVP) Fludioxonil Azinphos‐methyl (Gluthion) Diethofencarb Flufenacet Azoxystrobin Difenoconazole Flufenoxuron Beflubutamid Diflubenzuron Flumetsulam Benalaxyl Diflufenican Flumioxazin Benfuracarb Dimethachlor Fluometuron Benzoximate Dimethoate Fluopicolide Bifenazate Dimethomorph Fluoxastrobin Bitertanol Dimoxystrobin Fluquinconazole Boscalid (Nicobifen) Diniconazole Flusilazole Bromuconazole Dinotefuran Flutriafol Bupirimate Dioxacarb Foramsulfuron Byprofezin Disulfoton (Di‐Syston) Forchlorfenuron Butocarboxim Diuron Fosthiazate Carbaryl(Sevin) Epoxyconazole Furberidazole Carbendazim Ethidimuron Furalaxyl Carbofuran Ethion Furathiocarb Carbosulfan Ethirimol Halofenozide Carboxin Ethofumesate Halosulfuron‐methyl Carfentrazone‐ethyl Ethoprophos Hexaconazole Chlorantraniliprole Ethoxyquin Hexaflumuron Chlorfenvinphos Famoxadone Hexythiazox Chloridazon (Pyrazon) Fenamidone Imazalil Chlorotoluron Fenamiphos Imidacloprid Chloroxuron Fenarimol Indoxacarb Chlorsulfuron Fenazaquin Ipconazole Clethodim Fenbuconazole Iprovalicarb Clofentezine Fenhexamid Isocarbophos Clomazone Fenobucarb Isofenphos‐methyl Cyazofamid Fenoxycarb Isoprothiolane (Continued) Great Plains Analytical
    [Show full text]
  • Herbicide Modes of Action (Effect on Plant Growth)
    Herbicide Modes of Action (effect on plant growth) This chart groups herbicides by their modes of action to assist you in selecting herbicides 1) to maintain greater diversity in herbicide use and 2) to rotate among herbicides with different sites of action to delay the development of herbicide resistance. Site of Action Group* Site of Action Species in U.S. No. of Resistant Weed Chemical Family Active Ingredient Site of Action Group* Site of Action Species in U.S. No. of Resistant Weed Chemical Family Active Ingredient ACCase 15 Aryloxyphenoxy fenoxaprop 10 Glutamine 0 None accepted glufosinate 1 Inhibitors propionate fluazifop Synthesis (acetyle CoA quizalofop Inhibitor carboxylase) Nitrogen Metabolism Inhibitors Cyclohexanedione clethodim Lipid Synthesis sethoxydim 13 Diterpene 0 Isoxazolidinone clomazone Synthesis 2 ALS Inhibitors 38 Sulfonylurea chlorimuron Inhibitor (acetolactate foramsulfuron HPPD 0 Isoxazole isoxaflutole synthase) halosulfuron 27 Inhibitors iodosulfuron Triketone mesotrione nicosulfuron tembotrione primisulfuron Pigment Inhibitors tropramezone prosulfuron rimsulfuron 14 PPO 2 Diphenylether acifluorfen, thifensulfuron Inhibitors fomesafen tribenuron lactofen N-phenylphthalimide flumiclorac Imidazolione imazamox flumioxazin imazaquin imazethapyr Aryl triazinone sulfentrazone carfentrazone Triazoloyriidine flumetsulam Trifluoromethyl saflufenacil Amino Acid Synthesis Inhibitors cloransulam uracils EPSP Synthase 7 None accepted glyphosate Photosystem I 4 Bipyridilium paraquat 9 Cell Membrane Disrupters 22 Inhibitor
    [Show full text]
  • PB1775 Common Commercial Pre-Packaged Herbicide Mixtures
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Field & Commercial Crops UT Extension Publications 3-2008 PB1775 Common Commercial Pre-packaged Herbicide Mixtures The University of Tennessee Agricultural Extension Service Follow this and additional works at: https://trace.tennessee.edu/utk_agexcrop Part of the Plant Sciences Commons Recommended Citation "PB1775 Common Commercial Pre-packaged Herbicide Mixtures," The University of Tennessee Agricultural Extension Service, 08-0158 PB1775-2.5M-3/08 E12-5115-00-011-08, https://trace.tennessee.edu/utk_agexcrop/65 The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or ecommendations.r Current information about UT Ag Research can be found at the UT Ag Research website. This Production is brought to you for free and open access by the UT Extension Publications at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Field & Commercial Crops by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. PB1775 Common Commercial Pre-packaged Herbicide Mixtures Photo courtesy of Larry Steckel Gregory Armel, Assistant Professor Weed Science — Horticulture Crops and Invasive Weeds G. Neil Rhodes, Professor Weed Science — Forage , Biofuel Crops, Tobacco and Aquatics William Klingeman, Associate Professor Nursery Production Lawrence Steckel,
    [Show full text]
  • Data Series 876
    Prepared in cooperation with the San Luis and Delta Mendota Water Authority Dissolved Pesticide Concentrations Entering the Sacramento–San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012–13 Data Series 876 U.S. Department of the Interior U.S. Geological Survey Cover. View of bridge over the Sacramento River at Freeport, Sacramento, Calif. Photo taken by the author. Dissolved Pesticide Concentrations Entering the Sacramento–San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012–13 By James L. Orlando, Megan McWayne, Corey Sanders, and Michelle Hladik In cooperation with the San Luis and Delta Mendota Water Authority Data Series 876 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Synergistic Herbicidal Combination of Clomazone
    (19) & (11) EP 2 303 022 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 43/80 (2006.01) A01N 37/20 (2006.01) 27.06.2012 Bulletin 2012/26 A01P 13/00 (2006.01) (21) Application number: 09741765.3 (86) International application number: PCT/DK2009/000105 (22) Date of filing: 07.05.2009 (87) International publication number: WO 2009/135492 (12.11.2009 Gazette 2009/46) (54) SYNERGISTIC HERBICIDAL COMBINATION OF CLOMAZONE AND PETHOXAMID SYNERGISTISCHE HERBIZIDE KOMBINATION VON CLOMAZON UND PETHOXAMID COMBINAISON HERBICIDE SYNERGIQUE DE CLOMAZONE ET DE PETHOXAMIDE (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • REFARDT, Matthias HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL 4107 Ettingen (CH) PT RO SE SI SK TR • CHRISTENSEN, Casper, Reinhard Designated Extension States: 7500 Holstebro (DK) AL BA RS (74) Representative: Rasmussen, Torben Ravn et al (30) Priority: 09.05.2008 DK 200800667 Awapatent A/S Rigensgade 11 (43) Date of publication of application: 1316 Copenhagen K (DK) 06.04.2011 Bulletin 2011/14 (56) References cited: (73) Proprietor: Cheminova A/S EP-A1- 0 206 251 US-A- 4 405 357 7620 Lemvig (DK) US-A1- 2003 069 137 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]