Coleoptera: Chrysomelidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Антофагия Листоедов (Coleoptera, Chrysomelidae) © 2010 Г
ЗООЛОГИЧЕСКИЙ ЖУРНАЛ, 2010, том 89, № 5, с. 588–597 УДК 595.768.12 АНТОФАГИЯ ЛИСТОЕДОВ (COLEOPTERA, CHRYSOMELIDAE) © 2010 г. А. О. Беньковский Институт проблем экологии и эволюции РАН, Москва 119071, Россия email: [email protected] Поступила в редакцию 09.12.2008 г. В естественных и лабораторных условиях достоверно установлена антофагия имаго Donacia bicolora, D. brevitarsis, D. obscura, D. thalassina, Plateumaris discolor, Cryptocephalus laetus, C. sericeus, C. solivagus, Labidostomis longimana, Hydrothassa marginella, Phaedon concinnus, Galerucella nymphaeae, Neocrepi dodera femorata, Altica oleracea, Aphthona lutescens, Longitarsus pellucidus и личинок Entomoscelis adonidis, H. marginella, G. nymphaeae, впервые для всех видов, кроме P. discolor, L. longimana и C. sericeus. Изу чены ротовые части имаго листоедовантофагов. Мандибулы и максиллы у рассмотренных видов Donacia и Plateumaris несут специальные приспособления для поедания пыльцы. Обсуждаются во просы экологии видов и эволюции антофагии. Большинство листоедов (Chrysomelidae) на первую очередь Plateumaris discolor (Panzer), пыль взрослой стадии питаются листьями, личинки в цой и другими частями цветка ириса (Iris), камы основном листьями, корнями, детритом или рас ша и осоки (Carex). Монрос (Monrós, 1954) отме тительным соком. Питание листоедов цветками тил поедание пыльцы неопределенного растения (антофагия) рассматривается как редкое явление из семейства сложноцветных (Asteraceae) жуками (Гринфельд, Исси, 1958; Медведев, Рогинская, Aulacoscelis candezei Chapuis. Эрбер (Erber, -
2017 City of York Biodiversity Action Plan
CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley. -
The Orkney Local Biodiversity Action Plan 2013-2016 and Appendices
Contents Page Section 1 Introduction 4 1.1 Biodiversity action in Orkney – general outline of the Plan 6 1.2 Biodiversity Action Planning - the international and national contexts 6 • The Scottish Biodiversity Strategy 1.3 Recent developments in environmental legislation 8 • The Marine (Scotland) Act 2010 • The Wildlife and Natural Environment (Scotland) Act 2011 • The Climate Change (Scotland) Act 2009 1.4 Biodiversity and the Local Authority Planning System 12 • The Orkney Local Development Plan 2012-2017 1.5 Community Planning 13 1.6 River Basin Management Planning 13 1.7 Biodiversity and rural development policy 14 • The Common Agricultural Policy • Scotland Rural Development Programme 2007-2013 1.8 Other relevant national publications 15 • Scotland’s Climate Change Adaptation Framework • Scotland’s Land Use Strategy • The Scottish Soil Framework 1.9 Links with the Orkney Biodiversity Records Centre 16 Section 2 Selection of the Ten Habitats for Inclusion in the Orkney Biodiversity Action Plan 2013-2016 17 1 • Lowland fens 19 2 • Basin bog 27 3 • Eutrophic standing waters 33 4 • Mesotrophic lochs 41 5 • Ponds and milldams 47 6 • Burns and canalized burns 53 7 • Coastal sand dunes and links 60 8 • Aeolianite 70 9 • Coastal vegetated shingle 74 10 • Intertidal Underboulder Communities 80 Appendix I Species considered to be of conservation concern in Orkney Appendix II BAP habitats found in Orkney Appendix III The Aichi targets and goals 3 Orkney Local Biodiversity Action Plan 2013-2016 Section 1 – Introduction What is biodiversity? a) Consider natural systems – by using The term ‘biodiversity’ means, quite simply, knowledge of interactions in nature and how the variety of species and genetic varieties ecosystems function. -
National Botanic Garden of Wales Ecology Report, 2016
Regency Landscape Restoration Project ECOLOGICAL SURVEYS and ASSESSMENT VOLUME 1: REPORT Revision of 18th April 2016 Rob Colley Jacqueline Hartley Bruce Langridge Alan Orange Barry Stewart Kathleen Pryce Richard Pryce Pryce Consultant Ecologists Trevethin, School Road, Pwll, LLANELLI, Carmarthenshire, SA15 4AL, UK. Voicemail: 01554 775847 Mobile: 07900 241371 Email: [email protected] National Botanic Garden of Wales REVISION of 18th April 2016 Regency Landscape Restoration Project: Ecological Assessment REVISION RECORD DATE Phase 1 field survey completed 11/10/15 RDP Phase 1 TNs completed & checked 30/10/15 RDP First Working Draft issued to client 9/11/15 RDP Second Working Draft issued to client (interim bat section added) 19/11/15 RDP Third Working Draft issued to client (draft texts for dormouse, badger 19/1/16 RDP and updated bat sections added) Revised and augmented badger section added. 11/2/16 JLH & RDP Revised section only, issued to client. Fungi section added from Bruce Langridge 31/3/16 RDP Otter & bat updates added 11/4/16 RDP Bryophyte, winter birds & invertebrate updates added 15/4/16 RDP All figures finalized 15/4/16 SR Text of report proof read 16-17/4/16 KAP & RDP Add revised bird section & invertebrate appendices 17/4/16 RDP Final Report, appendices and figures issued to client 18/4/16 RDP ________________________________________________________________________________________________ Pryce Consultant Ecologists Trevethin, School Road, Pwll, Llanelli, Carmarthenshire, SA15 4AL. Voicemail: 01554 775847 Mobile: 07900 241371 Email: [email protected] PAGE 2 National Botanic Garden of Wales REVISION of 18th April 2016 Regency Landscape Restoration Project: Ecological Assessment SUMMARY OF SIGNIFICANT ECOLOGICAL ISSUES 1. -
Aantekeningen Over Chrysomelidae (Coleoptera) in Nederland 8
Aantekeningen over Chrysomelidae (Coleoptera) in Nederland 8 Tijdens een inventarisatie van bladkevers van de Ron Beenen1, Frank van Nunen2 & Jaap Winkelman3 Sint Pietersberg te Maastricht werd op klein hoefblad dat tussen steenbrokken groeide Longi- 1Martinus Nijhoffhove 51 tarsus gracilis voor het eerst in Nederland ge- 3437 ZP Nieuwegein [email protected] vonden. Ook in het aangrenzende deel van Duitsland leeft deze keversoort onder vergelijk- 2Amaliastein 113 bare omstandigheden. Een andere nieuwe blad- 4133 HB Vianen keversoort voor de Nederlandse fauna is Phyllo- 3Waverstraat 36-III treta christinae. Van deze soort werd een man- 1079 VM Amsterdam netje in Vianen gevonden. De Nederlandse vondsten van de maïswortelkever (Diabrotica virgifera) worden kort opgesomd. Deze Ameri- kaanse kever is sinds 1992 bekend uit Europa en kan aanzienlijke schade veroorzaken. Van de zeldzame bladkevers Hydrothassa hannoveriana, Galeruca pomonae, Xanthogaleruca luteola and Mniophila muscorum worden nog niet eerder ge- publiceerde vondsten beschreven. burg uitsluitend versnipperd voorkwam. Nadat C. Berger in Entomologische Berichten 66(5): 150-154 1963 een zeer groot aantal exemplaren van deze soort verza- melde te Sint Odiliënberg, zijn er sindsdien in Limburg nog vondsten uit Sint Odiliënberg (1971, leg. G.J. Slob), Echt Trefwoorden: bladkevers, verspreiding, biotoop, voedsel- (1978, leg. B. van Aartsen) en Vlodrop (1980, leg. B. van Aart- plant sen) bekend ge- worden. In Mid- Inleiding den-Limburg kwam deze ke- In deze achtste bijdrage over de Nederlandse bladkevers versoort gedu- worden twee nieuwe soorten voor de Nederlandse fauna rende de laatste vermeld. Daarnaast staan we stil bij enkele bijzondere vond- decennia van de sten die aan het licht kwamen bij het samenstellen van het 20e eeuw dus op onderdeel over Chrysomelidae in de kevercatalogus die mo- verschillende menteel wordt voorbereid. -
The Bering Land Bridge: a Moisture Barrier to the Dispersal of Steppe–Tundra Biota?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Quaternary Science Reviews 27 (2008) 2473–2483 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The Bering Land Bridge: a moisture barrier to the dispersal of steppe–tundra biota? Scott A. Elias*, Barnaby Crocker Geography Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK article info abstract Article history: The Bering Land Bridge (BLB) connected the two principal arctic biological refugia, Western and Eastern Received 14 April 2008 Beringia, during intervals of lowered sea level in the Pleistocene. Fossil evidence from lowland BLB Received in revised form 9 September 2008 organic deposits dating to the Last Glaciation indicates that this broad region was dominated by shrub Accepted 11 September 2008 tundra vegetation, and had a mesic climate. The dominant ecosystem in Western Beringia and the interior regions of Eastern Beringia was steppe–tundra, with herbaceous plant communities and arid climate. Although Western and Eastern Beringia shared many species in common during the Late Pleistocene, there were a number of species that were restricted to only one side of the BLB. Among the vertebrate fauna, the woolly rhinoceros was found only to the west of the BLB, North American camels, bonnet-horned musk-oxen and some horse species were found only to the east of the land bridge. These were all steppe–tundra inhabitants, adapted to grazing. The same phenomenon can be seen in the insect faunas of the Western and Eastern Beringia. -
Changes in Forest Productivity Across Alaska Consistent with Biome Shift
Ecology Letters, (2011) doi: 10.1111/j.1461-0248.2011.01598.x LETTER Changes in forest productivity across Alaska consistent with biome shift Abstract Pieter S. A. Beck,1* Glenn P. Juday,2 Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st Claire Alix,3 Valerie A. Barber,2 century. This shift would manifest itself first at the biomeÕs margins, with evergreen forest expanding into Stephen E. Winslow,2 Emily E. current tundra while being replaced by grasslands or temperate forest at the biomeÕs southern edge. Sousa,2 Patricia Heiser,2 James D. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of Herriges4 and Scott J. Goetz1 primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. Keywords Boreal forests, drought, evergreen forests, global warming, high latitudes, NDVI, productivity, remote sensing, tree rings. Ecology Letters (2011) agreement with model outputs (Forbes et al. 2010). Populations of far INTRODUCTION northern trees in cold marginal environments have sustained positive Over the 21st century, dynamic global vegetation models predict that growth responses to temperature, and in recent decades have grown at the boreal biome is likely to experience forest conversion and losses their greatest recorded rates (Juday et al. -
CHRYSOMELA Linnaeus, 1758 GONIOCTENA Dejean, 1836 PHRATORA Dejean, 1836
Subfamily Chrysomelinae Very convex hairless beetles; antennae generally somewhat thickened towards apex. They are usually collected by sweeping in summer, but some may be found in winter in moss, leaf litter etc. Source material Joy (1932) A Practical Handbook of British Beetles. Lompe A. (2013) Käfer Europas: Chrysomelinae published online on pages linked from http://www.coleo-net.de/coleo/texte/chrysomelinae.htm. Translated and published here with permission. Image credits Unless otherwise indicated, all images are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. Checklist from the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff, (available to download from www.coleopterist.org.uk/checklist.htm). Subfamily Chrysomelinae TIMARCHA Samouelle, 1819 CHRYSOLINA Motschulsky, 1860 GASTROPHYSA Dejean, 1836 PHAEDON Latreille, 1829 HYDROTHASSA Thomson, C.G., 1859 PRASOCURIS Latreille, 1802 PLAGIODERA Dejean, 1836 CHRYSOMELA Linnaeus, 1758 GONIOCTENA Dejean, 1836 PHRATORA Dejean, 1836 Creative Commons. © Mike Hackston (2015). Adapted and updated from Joy (1932). Some species keys translated from the German, original from Dr Arved Lompe (published here with permission). CHRYSOLINA Motschulsky, 1860 GONIOCTENA Dejean, 1836 americana (Linnaeus, 1758) decemnotata (Marsham, 1802) banksii (Fabricius, 1775) olivacea (Forster, 1771) brunsvicensis (Gravenhorst, 1807) pallida (Linnaeus, 1758) cerealis (Linnaeus, 1767) viminalis (Linnaeus, 1758) coerulans (Scriba, 1791) -
2013 Draft York
YORK BIODIVERSITY ACTION PLAN (BAP) -- FOR LIFE Introduction What is biodiversity? Biodiversity is the huge variety of life that surrounds us, its plants, animals and insects and the way they all work together. When you are outside, in the garden, field, park, woods, river bank, wherever you are …if you look around and listen, you begin to appreciate how the immense variety of plants and wildlife that surrounds us makes our lives special. It is like a living jigsaw, each piece carefully fitting into the next, if you lose a piece, the picture is incomplete. Why is biodiversity important? – Ecosystem Services All life has an intrinsic value that we have a duty to protect and, like a jigsaw, each piece has its own part to play. The loss of one piece will affect how the next one works. We are all part of the ecosystems that surround us and so any effect on them will ultimately affect us so by protecting and helping biodiversity we are improving life for ourselves. A rich natural environment delivers numerous unseen benefits which we tend to take for granted. These are what we now call ecosystem services – things like water storage and flood control, pollination of food crops by insects even the air we breathe and the water we drink are all part of this service. There are indirect benefits as well such as improved health and wellbeing and higher property values. All of this is down to our natural environment and the biodiversity in it. Ecosystem Services Flood Storage Clean Water Carbon storage – Woods, trees, heaths Soil Food and timber Medicine Reducing heat island effects Air pollution reduction Pollination Why do we need an Action Plan? Sometimes the way we live can make life difficult for some plants and animals to survive. -
Late Pleistocene Insects from the Dubrovino Site at Ob River (West Siberia, Russia) and Their Paleoenvironmental Significance
Palaeontologia Electronica palaeo-electronica.org Late Pleistocene insects from the Dubrovino site at Ob River (West Siberia, Russia) and their paleoenvironmental significance Anna A. Gurina, Roman Yu. Dudko, Sergey E. Tshernyshev, Eugeny V. Zinovyev, and Andrei A. Legalov ABSTRACT A blue-grey clay loam lens with plant and insect remains was found in an expo- sure of the Ob River, 2 km upper Dubrovino village in Novosibirskaya Oblast of Russia. Conventional radiocarbon dating of the Dubrovino deposit is ca 19,444±159 14C BP (23,234±338 cal yr BP) and coincides with Sartan glaciation period (MIS 2). Ninety-two Coleoptera species, dominated by fragments of Curculionidae and Carabidae are rep- resented in the Dubrovino deposit. Species of the tundra-steppe fauna are dominant, followed by meadow-dwelling taxa and coniferous forest taxa. A comparison of the Dubrovino assemblage with the previously studied late Pleistocene Kalistratikha and Bunkovo fossil assemblages showed that tundra-steppe landscapes with coniferous groves and sparse meadow vegetation were typical for this area from the end of Kargin interglacial (MIS 3) through the end of the Sartan glaciation (MIS 2). Anna A. Gurina. Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Street 11, Novosibirsk 630091, Russia. [email protected] Roman Yu. Dudko. Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Street 11, Novosibirsk 630091, Russia. [email protected] Sergey E. Tshernyshev. Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Street 11, Novosibirsk 630091, Russia and Tomsk State University, Lenina Prospekt 36, Tomsk 634050, Russia. -
Draft Project Record Project 461 Species Management in Aquatic
Species management in aquatic Habitats WRc Nov 1993 Item Type monograph Authors Gulson, J. Publisher National Rivers Authority Download date 05/10/2021 07:28:40 Link to Item http://hdl.handle.net/1834/27209 Draft Project Record Project 461 Species Management in Aquatic Habitats WRc plc November 1993 R&D 461/6/N E n v ir o n m e n t Ag e n c y NATIONAL LIBRARY & INFORMATION SERVICE HEAD OFFICE Rio House, Waterside Drive. Aztec West, Almondsbury. Bristol BS32 4UD SPECIES MANAGEMENT IN AQUATIC HABITATS J Gulson Research Contractor: WRc pic Henley Road Medmenham Marlow Buckinghamshire SL7 2HD National Rivers Authority Rivers House Waterside Drive Almondsbury Bristol BS12 4UD Draft Project Record 461/6/N National Rivers Authority Rivers House Waterside Drive Almondsbury BRISTOL BS12 4UD Tel: 0454 624400 Fax: 0454 624409 © National Rivers Authority 1993 All rights reserved. No pan of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, mechanical, photocopying, recording or otherwise without the prior permission of the National Rivers Authority. Dissemination Status Internal: Restricted External: Restricted Research Contractor This document was produced under R&D Contract 461 by: WRc pic Henley Road Medmenham Marlow B ucki ngh am shire SL7 2HD Tel: 0491 571531 Fax: 0491 579094 WRc Reference: NR 3567/7053 NRA Project Leader The NRA’s Project Leader for R&D Contract 461: Dr J Hogger/Northumbria and Yorkshire Region Additional Copies Further copies of this document may be obtained from Regional R&D Co-ordinators or the R&D Section of NRA Head Office. -
The New Forest
Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Joint Nature Conservation Committee Monkstone House City Road Designation date Site Reference Number Peterborough Cambridgeshire PE1 1JY UK Telephone/Fax: +44 (0)1733 – 562 626 / +44 (0)1733 – 555 948 Email: [email protected] 2. Date this sheet was completed/updated: Designated: 22 September 1993 3. Country: UK (England) 4. Name of the Ramsar site: The New Forest 5.