Exenatide: Role in Management of Type 2 Diabetes and Associated Cardiovascular Risk Factors

Total Page:16

File Type:pdf, Size:1020Kb

Exenatide: Role in Management of Type 2 Diabetes and Associated Cardiovascular Risk Factors Therapy in Practice Exenatide: role in management of Type 2 diabetes and associated cardiovascular risk factors Zin Z Htike1, Kamlesh Khunti2 & Melanie Davies* Practice Points Obesity in Type 2 diabetes poses a challenge in choosing the right combination of glucose-lowering agents, particularly due to the potential side effect of weight gain with many of the existing glucose-lowering medications. One of the incretin-based therapies, the glucagon-like peptide-1 analog, exenatide, is found to be a promising new agent that not only provides glucoregulatory effect in improving glycemic control without increase risk of hypoglycemia but also often results in weight loss. Treatment with exenatide results in reduction in HbA1c comparable to many of the existing glucose-lowering agents including basal insulin analog, galrgine or biphasic insulin aspart. Exenatide is of particular benefit in obese patients with Type 2 diabetes whose control in inadequate on a combination of oral glucose-lowering agents. To date, exenatide is not licensed for use in combination with insulin. SUMMARY Management of Type 2 diabetes, particularly in obese patients, is rather challenging as treatment with the majority of the available glucose-lowering t herapies is often associated with side effects of weight gain and hypoglycemia, in addition to failure to maintain durable glycemic control. The first available glucagon-like peptide-1 analog, exenatide, adds a new t herapeutic option to the currently available glucose-lowering agents for obese patients with Type 2 d iabetes. Both randomized controlled trials and retrospective observational s tudies have shown that treatment with exenatide not only improves glycemic control with a low risk of h ypoglycemia, but also results in concurrent weight loss with the additional benefit of i mprovement in cardiovascular risk factors of hypertension and hyperlipidemia. 1Department of Diabetes & Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK 2Department of Health Sciences, University of Leicester, Leicester, UK *Author for correspondence: Department of Cardiovascular Sciences, University of Leicester, UK; [email protected] part of 10.2217/CPR.11.132 © 2012 Future Medicine Ltd Clin. Pract. (2012) 9(1), 23–38 ISSN 2044-9038 23 Therapy in Practice | Htike, Khunti & Davies Background cardiovascular disease and mortality [9,11] . The The need for newer glucose-lowering availability of new glucose-lowering therapies therapies that can achieve or maintain acceptable gly- Type 2 diabetes (T2DM) is characterized by cemic control without weight gain is therefore multiple pathophysiological defects. Insulin highly desirable to clinicians [12] . The develop- resistance in multiorgans (liver, muscle, adipose ment of GLP-1 analogs, which not only improve tissue and brain), progressive decline in b-cell glycemic control but also results in weight loss, function of the pancreas, inappropriate hyper- is a welcome addition to the treatment options glucagonemia, increased glucose reabsorption in T2DM. from the kidney and reduced resistance to gas- trointestinal (GI) hormones termed incretins, all Background to incretin-based therapy interplay in the pathogenesis [1] . Physiologically, ingestion of glucose elicits a In practice, when lifestyle measures and met- greater insulin response than intravenous glu- formin therapy fails, many clinicians traditionally cose infusions. This phenomenon is known adopt a step-wise approach in adding other oral as the incretin effect [13] . Glucose-dependent glucose-lowering agents before initiation of insulin. insulinotropic peptide (GIP) and GLP-1 are However, with an improved understanding of the gut hormones produced in response to oral pathophysiology, there has been a shift in treat- glucose ingestion and are collectively known as ment paradigm with early insulin initiation recom- incretins. Their action is short-lived as a result mended as the first-tier approach in the consensus of rapid inactivation by the enzyme dipeptidyl statement by the American Diabetes Association peptidase-4 (DPP-4) [14,15] . The incretin effect is and European Association for the Study of Diabetes deemed to be impaired in T2DM [16] . Although after lifestyle modification and metformin therapy GLP-1 secretion and activity are maintained, a [2]. The UK Prospective Diabetes Study confirmed supraphysiological concentration is needed to that despite implementation of lifestyle and medi- compensate for the disease-associated impair- cal management with metformin or sulfonylurea ment of GIP activity [17] . Unlike GIP, GLP-1 (SU), or combination therapy, b-cell function con- is capable of stimulating both early- and late- tinues to decline with the resultant worsening of phase insulin secretion in T2DM. However, the glycemic control as the condition progresses [3,4]. exact mechanism remains debatable. Thus, the The use of metformin, SU or thiazolidinediones incretin effect could be potentially enhanced (TZDs), either as monotherapy or in combination, by either supplementing with incretin analogs, is limited by the inability to maintain durable gly- which mimic GLP-1 action such as exenatide cemic control [5]. Moreover, undesirable side effects, and liraglutide, or by preventing GLP-1 break- including weight gain, hypoglycemia, GI intoler- down by DDP-4 inhibitors, such as sitagliptin, ance, peripheral edema, fracture risk and suspected saxagliptin, linagliptin or vildagliptin, also risk of bladder cancer [6–8] lead to reduced patient termed incretin enhancers. adherence or physician reluctance to prescribe these medications. Intensifying therapy even with Role of the incretin mimetics modern insulin analog regimes invariably results Exenatide is the first synthetic GLP-1 analog, in weight gain [2,9]. originally isolated from the saliva of the des- In selected clinical settings, specifically when ert lizard, Gila monster (Heloderma suspectum). hypoglycemic or weight gain is particularly This synthetic peptide has 53% homology undesirable, addition of TZD (pioglitazone) or with the human GLP-1 amino acid sequence, newer agents, such as glucagon-like peptide-1 thus allowing it to bind avidly to the GLP-1 (GLP-1), may be considered as the second tier [2]. receptor but resist enzymatic degradation by Similarly, in the American Association Clinical DPP-4 [13,15] . Endocrinologists guidelines, early combination By mimicking GLP-1 action, exenatide of oral antidiabetic drugs (OADs) and treat- improves the glucoregulatory effect by enhancing ment with newer agents, such as incretin-based glucose-dependent insulin secretion, restoring t herapies are advocated at an earlier stage [10] . first-phase insulin response, suppressing inap- It is well established that poor glycemic con- propriate glucagon secretion [15,18,19] and thus has trol in T2DM and obesity, either in combination an effect on both fasting and postprandial glu- or independent of each other, increase the risk of cose levels [20,21]. It also delays gastric emptying 24 Clin. Pract. (2012) 9(1) future science group 0.85% and0.85% weight loss 1.5–3 of significantof approximately reduction in HbA1c exenatide unequivocally resulted in amodest but tion, hastion, been developed and tested in Phase mulation, exenatide once-weekly (Ex the Ex real-life settings from published data both for management in T2DM clinical of trials and safety and efficacyof using exenatide in the theby EMA clinical trials, and has recently been approved & bodyweight via the kidney g by ration is manufactured Eli by Lilly (Byetta asan adjunctive therapy recommended its use in patients with T2DM inthe UK since2009 and NICEhas recently ogy with human GLP amino acid substitution, sharing 97% homol recombinant DNA technology with only one GLP Exenatide: role in management of Type of management in role Exenatide: marized in lowering therapy various to OADs is sum The efficacyof adding exenatide as a glucose- co Ex controlled trials & real-life studies randomized from evidence Clinical leading weight to loss and decreases food intake promoting by satiety US Exendin-4) and was first the by approved therapy in T2DM updated guidelines in 2009 half-life 2–3 of 4–6 ger half-life 2.4 of resistant inactivation to has it alon DPP-4, by agement T2DM of as third-line second- a or agent the for man NICEmended by in the UK in 2008 be to used alone acombination or both. of These studies tolerated doses either metformin of an or SU optimal glycemic control using the maximum subjects with T2DM who wereunable achieve to addingof exenatide the to treatment regimens of AMIGO studies Effect of exenatide on glycemic control control glycemic on exenatide of Effect mbination of OADs The purpose this of article is review to the The exenatide twice daily (Ex Liraglutide (Victoza The pivotal clinical trials the were three b.i.d. as an add-on therapy to a single or or asingle to therapy add-on an as b.i.d. F h c - DA in 2005DA be to used as an adjunctive 1 a 1 b ompared with human GLP .i.d. and.i.d. the Ex nalog. Liraglutide is synthesized by Table [104] mi . n n 1 [23–25] h a . In all studies, addition of lo [22] [13,15] [101] merular filtration. nd adurationnd action of of [15,18,19] . It was. It originally recom ® - 1. I 1. , evaluating the effects , and then again in the ) is the second licensed . It is mainly It . e q [103] .w. preparation. .w. t has been available [102] . A long-acting. A for . Since exenatide is . k - g 1, w 1, b [23–26] .i.d.) prepa q li
Recommended publications
  • Exenatide QW: a New Treatment Option for Type 2 Diabetes Offering Ease of Use, Improved Efficacy, and Reduced Side Effects
    FEATURE ARTICLE Commentary: Exenatide QW: A New Treatment Option for Type 2 Diabetes Offering Ease of Use, Improved Efficacy, and Reduced Side Effects Charles F. Shaefer, Jr., MD Editor’s note: Once-weekly exenatide, (also called incretin mimetics) cur- with GLP-1 receptor agonists is the which has recently been approved for rently in use.3,4 only form of anti-diabetes therapy patients with type 2 diabetes, has great Validation of the acceptance offering proven weight loss. Finally, potential as a new diabetes therapy in clinical practice of GLP-1 GLP-1 receptor agonist therapy is in the primary care setting. This receptor agonists can be found in one of the recommended treatment commentary and the feature article that the recently released American strategies offering a low incidence of follows it (p. 95) offer an overview of Diabetes Association (ADA)/ hypoglycemia, an important aspect this new therapeutic tool and important European Association for the Study of diabetes therapy learned from the insights about its clinical utility. In the of Diabetes (EASD) position state- Action to Control Cardiovascular interest of transparency, however, we ment on the management of type 2 Risk in Diabetes trial.6 want to point out that the authors of diabetes, which placed these drugs As clinicians consider what to do both articles are affiliated with Amylin alongside older, well-accepted agents when metformin and lifestyle change Pharmaceuticals, which manufactures such as sulfonylureas (SUs) and do not adequately control a patient’s exenatide QW and markets it under the thiozolidinediones (TZDs) as a sec- A1C, they frequently ask, “incretin 5 trade name Bydureon.
    [Show full text]
  • GLP-1 Receptor Agonists
    Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. GLP-1 Receptor Agonists Evidence Summary GLP-1 agonists are beneficial for patients with type 2 diabetes and obesity. Some evidence suggests benefits for Alzheimer’s disease. It is unclear whether it is beneficial for individuals without underlying metabolic disease. Semaglutide seems to be most effective for metabolic dysfunction, though liraglutide has more preclinical data for Alzheimer’s disease. Neuroprotective Benefit: Evidence from many preclinical studies and a pilot biomarker study suggest some neuroprotective benefits with GLP-1 agonists. However, whether they may be beneficial for everyone or only a subset of individuals (e.g. diabetics) is unclear. Aging and related health concerns: GLP-1 agonists are beneficial for treating diabetes and cardiovascular complications relating to diabetes. It is not clear whether they have beneficial effects in otherwise healthy individuals. Safety: GLP-1 agonists are generally safe for most people with minor side effects. However, long-term side effects are not known. 1 Availability: Available Dose: Varies - see Chemical formula: C172H265N43O51 (Liraglutide) as a prescription chart at the end of MW: 3751.262 g/mol medicine.
    [Show full text]
  • The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands
    The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands Clare Louise Wishart Submitted in accordance with the requirements for the degree of Doctor of Philosophy of Science University of Leeds School of Biomedical Sciences Faculty of Biological Sciences September 2013 I Intellectual Property and Publication Statements The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Clare Louise Wishart to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds and Clare Louise Wishart. II Acknowledgments Firstly I would like to offer my sincerest thanks and gratitude to my supervisor, Dr. Dan Donnelly, who has been nothing but encouraging and engaging from day one. I have thoroughly enjoyed every moment of working alongside him and learning from his guidance and wisdom. My thanks go to my academic assessor Professor Paul Milner whom I have known for several years, and during my time at the University of Leeds he has offered me invaluable advice and inspiration. Additionally I would like to thank my academic project advisor Dr. Michael Harrison for his friendship, help and advice. I would like to thank Dr. Rosalind Mann and Dr. Elsayed Nasr for welcoming me into the lab as a new PhD student and sharing their experimental techniques with me, these techniques have helped me no end in my time as a research student.
    [Show full text]
  • Combining a Glucagon-Like Peptide-1 Receptor Agonist with Basal Insulin: the Why and How
    Combining a Glucagon-like Peptide-1 Receptor Agonist with Basal Insulin: The Why and How Case Study Mary is a 61 year-old female diagnosed with type 2 diabetes mellitus (T2DM) 8 years ago. She was initially managed with the combination of lifestyle modification and metformin. Since that time she was treated with a sulfonylurea, but it was discontinued due to symptomatic hypoglycemia. She was also treated with pioglitazone, but significant fluid retention led to it discontinuation. A year-and-a- half ago, basal insulin was added to her lifestyle and metformin management. She now administers 52 units (0.62 units/kg) once daily at bedtime. Since starting basal insulin, she has experienced 3 episodes of mild hypoglycemia. Since her diagnosis, Mary’s HbA1c has never been <7.0%; her current HbA1c is 7.9%. Over the past month, her fasting plasma glucose (FPG) has ranged from 103 mg/dL to 136 mg/dL and her postprandial glucose (PPG) from 164 mg/dL to 213 mg/dL. She has gained 2.6 kg since starting basal insulin and her body mass index is now 31 kg/m2. Her blood pressure is 134/82 mmHg. She experiences occasional tingling in her feet. Eye examination reveals grade 1 retinopathy. Current medications are: metformin 1000mg twice daily, basal insulin 52 units once daily at bedtime, and hydrochlorothiazide 25 mg once daily. Her family physician notes that Mary’s FPG is reasonably well-controlled, yet her HbA1c and PPG remain elevated. He is also concerned about her episodes of hypoglycemia and weight gain and the evidence indicating microvascular damage.
    [Show full text]
  • Predicting Immunogenicity of Peptide Drugs and Their Impurities
    Predicting Immunogenicity of Peptide Drugs and their Impurities using in Silico tools: Taspoglutide Case Study Aimee Mattei MS1, Frances Terry MPH1, Brian J Roberts PhD1, William Martin1, and Anne S De Groot MD1,2 1EpiVax, Inc.; 2Professor (Research) and Director, Institute for Immunology and Informatics, University of Rhode Island, USA Abstract What-if-Machine (WhIM) 15 Example Risk Profile for RLD A : . The peptide drug market is expected to generate $50B in revenue by 2024 but the FDA is Random Mimics the process of synthesizing High H ig h concerned about the number of impurities that may be introduced in the synthetic process. polypeptides and records theoretical Low 10 product impurities created through known . The peptide manufacturing process can result in synthesis-related impurities that can introduce Example Risk Profile for failures in the synthesis process. Random Peptides immunogenic epitopes within the amino acid sequence of the peptide, resulting in an unexpected 5 and undesired immune response against the drug. Each identified impurity is scored for Example Risk Profile for RLD B : putative T cell epitope content (EpiMatrix) Low 0 . EpiMatrix can be used to screen both the drug API sequence and its known peptide-related and cross conservation with the human Impurity Risk Score Risk Impurity impurities for the presence of putative T cell epitope content. proteome (JanusMatrix). -5 . When peptide-related impurities are unknown, the “What if Machine” (WhIM) can perform Impurities are weighted based on assumed probability of occurrence. Graphic for illustrative purposes only theoretical changes to the natural amino acid sequence of the drug substance and measure their -1 0 impact on the putative epitope content of the peptide.
    [Show full text]
  • A Network Meta-Analysis Comparing Exenatide Once Weekly with Other GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus
    Diabetes Ther DOI 10.1007/s13300-016-0155-1 REVIEW A Network Meta-analysis Comparing Exenatide Once Weekly with Other GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus Sheena Kayaniyil . Greta Lozano-Ortega . Heather A. Bennett . Kristina Johnsson . Alka Shaunik . Susan Grandy . Bernt Kartman To view enhanced content go to www.diabetestherapy-open.com Received: December 17, 2015 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT treatment of adults with T2DM inadequately controlled on metformin monotherapy. Introduction: Exenatide is a glucagon-like Methods: A systematic literature review was peptide-1 receptor agonist (GLP-1 RA), conducted to identify randomized controlled approved for treatment of type 2 diabetes trials (RCTs) that investigated GLP-1 RAs mellitus (T2DM). There is limited direct (albiglutide, dulaglutide, exenatide, liraglutide, evidence comparing the efficacy and and lixisenatide) at approved doses in the tolerability of exenatide 2 mg once weekly United States/Europe, added on to metformin (QW) to other GLP-1 RAs. A network only and of 24 ± 6 weeks treatment duration. meta-analysis (NMA) was conducted to A Bayesian NMA was conducted. estimate the relative efficacy and tolerability of Results: Fourteen RCTs were included in the exenatide QW versus other GLP-1 RAs for the NMA. Exenatide QW obtained a statistically significant reduction in glycated hemoglobin (HbA1c) relative to lixisenatide 20 lg once daily. No other comparisons of exenatide QW Electronic supplementary material The online version of this article (doi:10.1007/s13300-016-0155-1) to other GLP-1 RAs were statistically significant contains supplementary material, which is available to for change in HbA1c.
    [Show full text]
  • Membrane-Tethered Ligands Are Effective Probes for Exploring Class B1 G Protein-Coupled Receptor Function
    Membrane-tethered ligands are effective probes for exploring class B1 G protein-coupled receptor function Jean-Philippe Fortina, Yuantee Zhua, Charles Choib, Martin Beinborna, Michael N. Nitabachb, and Alan S. Kopina,1 aMolecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111; and bDepartment of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 6, 2009 (received for review January 6, 2009) Class B1 (secretin family) G protein-coupled receptors (GPCRs) peptide hormone complexes, providing important insight into modulate a wide range of physiological functions, including glu- the molecular mechanisms underlying PTH (3), corticotropin- cose homeostasis, feeding behavior, fat deposition, bone remod- releasing factor (CRF) (4), GIP (5), and exendin-4 (EXE4) (6) eling, and vascular contractility. Endogenous peptide ligands for interaction with their corresponding GPCRs. Notably, these these GPCRs are of intermediate length (27–44 aa) and include reports highlight that each of the peptides docks as an amphipathic receptor affinity (C-terminal) as well as receptor activation (N- ␣-helix in a hydrophobic groove present in the receptor ECD. terminal) domains. We have developed a technology in which a Peptide ligands that modulate class B1 GPCR function hold peptide ligand tethered to the cell membrane selectively modu- considerable promise as therapeutics. The peptidic GLP-1 mi- lates corresponding class B1 GPCR-mediated signaling. The engi- metic EXE4 (also known as exenatide or BYETTA) activates the neered cDNA constructs encode a single protein composed of (i)a GLP-1 receptor (GLP-1R) and represents the first incretin- transmembrane domain (TMD) with an intracellular C terminus, (ii) based pharmaceutical for the treatment of type 2 diabetes (7).
    [Show full text]
  • Glucagon-Like Peptide-1 and Its Class BG Protein–Coupled Receptors
    1521-0081/68/4/954–1013$25.00 http://dx.doi.org/10.1124/pr.115.011395 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:954–1013, October 2016 Copyright © 2016 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: RICHARD DEQUAN YE Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes Chris de Graaf, Dan Donnelly, Denise Wootten, Jesper Lau, Patrick M. Sexton, Laurence J. Miller, Jung-Mo Ahn, Jiayu Liao, Madeleine M. Fletcher, Dehua Yang, Alastair J. H. Brown, Caihong Zhou, Jiejie Deng, and Ming-Wei Wang Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.) Downloaded from Abstract.
    [Show full text]
  • (Hmmc) Dulaglutide (Trulicity
    HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) DULAGLUTIDE (TRULICITY®) FOR TYPE 2 DIABETES MELLITUS RECOMMENDED FOR RESTRICTED USE Name: What it is Indication Date Decision Decision NICE / SMC generic last revised Status Guidance (trade) dulaglutide glucagon‑like Type 2 diabetes June 2016 Final NICE - none ® (Trulicity ) peptide‑1 mellitus (T2DM) SMC – approved (GLP‑1) receptor for restricted use agonist Dulaglutide (Trulicity®) is RECOMMENDED FOR RESTRICTED USE as a GLP-1 receptor agonist option when a GLP-1 receptor agonist is indicated as add-on therapy in line with NICE guidelines for type 2 diabetes (see Policy Drivers overleaf) if a specialist service switches a patient from an alternative GLP-1 receptor agonist to dulaglutide clear information should be supplied on rationale and switch process to primary care colleagues. EFFICACY SAFETY From AWARD studies for change in HbA1c from According to SPC most common adverse events baseline, weekly dulaglutide was demonstrated to be: (≥1/10) are hypoglycaemia, particularly in o (1.5mg or 0.75mg) superior to placebo and exenatide combination with a sulfonylurea or insulin, and twice daily at 26 weeks gastrointestinal (GI) disorders. o (1.5mg or 0.75mg) superior to sitagliptin at 52 weeks According to the EPAR: o 1.5mg non-inferior to liraglutide 1.8mg daily at o across the phase II and III integrated safety 26 weeks population, incidence of common events are o (1.5mg or 0.75mg) non-inferior to insulin glargine at consistent with other GLP‑1 receptor agonists. 52 weeks. Superiority demonstrated for 1.5mg dose. o long‑term safety concerns of pancreatitis and Open label design of some of the AWARD studies pancreatic and thyroid cancers are consistent may have biased results with other GLP‑1 receptor agonists.
    [Show full text]
  • Exenatide Versus Insulin Lispro Added to Basal Insulin in a Subgroup of Korean Patients with Type 2 Diabetes Mellitus
    Original Article Others Diabetes Metab J 2017;41:69-74 https://doi.org/10.4093/dmj.2017.41.1.69 pISSN 2233-6079 · eISSN 2233-6087 DIABETES & METABOLISM JOURNAL Exenatide versus Insulin Lispro Added to Basal Insulin in a Subgroup of Korean Patients with Type 2 Diabetes Mellitus Kun-Ho Yoon1, Elise Hardy2, Jenny Han3 1 Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, 2AstraZeneca, Gaithersburg, MD, 3Pharmapace, San Diego, CA, USA Background: The prevalence of type 2 diabetes mellitus (T2DM) and obesity is increasing in Korea. Clinical studies in patients with T2DM have shown that combining the glucagon-like peptide-1 receptor agonist exenatide twice daily with basal insulin is an effective glucose-lowering strategy. However, these studies were predominantly conducted in non-Asian populations. Methods: We conducted a subgroup analysis of data from a multinational, 30-week, randomized, open-label trial to compare the effects of exenatide twice daily n( =10) or three times daily mealtime insulin lispro (n=13) among Korean patients with T2DM inadequately controlled (glycosylated hemoglobin [HbA1c] >7.0%) on metformin plus optimized insulin glargine. Results: Exenatide twice daily and insulin lispro both reduced HbA1c (mean –1.5% and –1.0%, respectively; P<0.01 vs. baseline). Fasting glucose and weight numerically decreased with exenatide twice daily (–0.7 mmol/L and –0.7 kg, respectively) and numer- ically increased with insulin lispro (0.9 mmol/L and 1.0 kg, respectively). Minor hypoglycemia occurred in four patients receiving exenatide twice daily and three patients receiving insulin lispro.
    [Show full text]
  • PRESS RELEASE Adocia Announces Positive Topline Study Results
    PRESS RELEASE Adocia announces positive topline study results comparing ultra-rapid insulin BioChaperone® Lispro with Novolog® and Fiasp® in people with type 1 diabetes • In this study using insulin pumps, BioChaperone Lispro U100 displayed faster-on and faster-off metabolic effects compared to Novolog®, confirming previous findings in studies versus Humalog® • BioChaperone® Lispro U100 showed a significantly faster-off effect compared to Fiasp® and similar ultra-rapid onset of action Lyon, France, December 6, 2017 – 6 pm CET – Adocia (Euronext Paris: FR0011184241- ADOC), the clinical biopharmaceutical company focused on developing innovative formulations of approved proteins for the treatment of diabetes, announced today positive topline results of a clinical study evaluating BioChaperone® Lispro, an ultra-rapid formulation of insulin lispro, compared to Novolog® (insulin aspart, Novo Nordisk), a rapid-acting insulin analog, and Fiasp® (faster-acting insulin aspart, Novo Nordisk), the only EMA-approved (European Medical Agency) and FDA-approved (Federal Drug Administration, USA) “ultra-rapid acting” insulin formulation. This Phase 1 study in insulin pumps is the first head-to-head comparison of two “ultra-rapid acting” insulin formulations. In this double-blind, randomized, three-period crossover study, 42 participants with type 1 diabetes received single doses (0.15 U/kg), under a euglycemic clamp procedure, of BioChaperone Lispro U100, Fiasp and Novolog, administered by an insulin pump (Medtronic MiniMed Paradigm® Veo) on three separate dosing visits. Objectives of the study included the comparison of the glucodynamic effects and the pharmacokinetic profiles obtained with the three agents. Safety and tolerability assessments were also performed. “The compelling performance of BioChaperone Lispro in a pump setting establishes our product as a strong contender in the emerging ultra-rapid insulin class, across a full array of injection devices.” commented Olivier Soula, Deputy General Manager and R&D Director of Adocia.
    [Show full text]
  • The Effects of Exenatide Twice Daily Compared to Insulin Lispro Added To
    Accepted Manuscript The effects of exenatide twice daily compared to insulin lispro added to basal insulin in Latin American patients with type 2 diabetes: A retrospective analysis of the 4B trial Silvia Beatriz Gorban de Lapertosa, Gustavo Frechtel, Elise Hardy, Leobardo Sauque-Reyna PII: S0168-8227(16)30722-7 DOI: http://dx.doi.org/10.1016/j.diabres.2016.10.001 Reference: DIAB 6765 To appear in: Diabetes Research and Clinical Practice Received Date: 15 April 2016 Revised Date: 21 September 2016 Accepted Date: 1 October 2016 Please cite this article as: S.B.G. de Lapertosa, G. Frechtel, E. Hardy, L. Sauque-Reyna, The effects of exenatide twice daily compared to insulin lispro added to basal insulin in Latin American patients with type 2 diabetes: A retrospective analysis of the 4B trial, Diabetes Research and Clinical Practice (2016), doi: http://dx.doi.org/10.1016/ j.diabres.2016.10.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The effects of exenatide twice daily compared to insulin lispro added to basal insulin in Latin American patients with type 2 diabetes: A retrospective analysis of the 4B trial Silvia Beatriz Gorban
    [Show full text]