Glucagon-Like Peptide-1 and Its Class BG Protein–Coupled Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Glucagon-Like Peptide-1 and Its Class BG Protein–Coupled Receptors 1521-0081/68/4/954–1013$25.00 http://dx.doi.org/10.1124/pr.115.011395 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:954–1013, October 2016 Copyright © 2016 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: RICHARD DEQUAN YE Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes Chris de Graaf, Dan Donnelly, Denise Wootten, Jesper Lau, Patrick M. Sexton, Laurence J. Miller, Jung-Mo Ahn, Jiayu Liao, Madeleine M. Fletcher, Dehua Yang, Alastair J. H. Brown, Caihong Zhou, Jiejie Deng, and Ming-Wei Wang Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.) Downloaded from Abstract. ................................................................................... 956 I. Introduction. ............................................................................. 956 II. Glucagon-Like Peptide-1. ................................................................. 957 A. Discovery. ............................................................................. 957 B. Physiology. ............................................................................. 957 by guest on September 27, 2021 1. Effect on Glucose Homeostasis. ..................................................... 958 2. Effect on Gastric Emptying. ......................................................... 958 3. Effect on Food Intake. ............................................................... 959 4. Effect on Cardiovascular Activity..................................................... 959 5. Effect on Immune Response.......................................................... 959 6. Effect on Kidney Function. .......................................................... 960 7. Effect on Nervous System............................................................ 960 C. Structure. ............................................................................. 960 1. a-Helical C-Terminal Region. ..................................................... 962 2. Flexible N-Terminal Region. ......................................................... 962 3. Interaction between the C-Terminal Helix and ECD. .............................. 963 4. Interaction between Flexible N terminus and 7TMD.. .............................. 964 D. Mutagenesis............................................................................ 964 1. Truncated GLP-1 Analogs............................................................ 964 2. Chimeric GLP-1 Analogs. ........................................................... 965 3. Substituted GLP-1 Analogs. ......................................................... 965 a. GLP-1 hydrophobic region I.. ..................................................... 965 b. GLP-1 hydrophobic region II...................................................... 966 c. Polar residues in a-helix.......................................................... 966 d. N-capping motif in GLP-1. ..................................................... 966 This work was supported by National Health and Family Planning Commission of China [2012ZX09304-011, 2013ZX09401003-005, 2013ZX09507001, and 2013ZX09507-002 to M.-W.W.]; Chinese Academy of Sciences [to M.-W.W.]; Shanghai Science and Technology Development Fund [15DZ2291600 to M.-W.W.]; Thousand Talents Program in China [to M.-W.W.]; the CAS-Novo Nordisk Research Fund [to D.Y.]; National Natural Science Foundation of China [81373463 to D.Y.]; National Health and Medical Research Council of Australia (NHMRC) Principal Research Fellowship [to P.M.S.]; NHMRC Program [Grant 1055134 to P.M.S.]; NHMRC Career Development Fellowship [to D.W.]; NHMRC Project [Grant 1061044 to P.M.S. and Grant 1065410 to D.W.]; Welch Foundation [AT-1595 to J.-M.A.]; and Juvenile Diabetes Research Foundation [37-2011-20 to J.-M.A.]. C.d.G., D.D., and D.W. contributed equally to this work. Address correspondence to: Dr. Ming-Wei Wang, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China. E-mail: [email protected] dx.doi.org/10.1124/pr.115.011395. 954 Glucagon-Like Peptide-1 and Its Receptors 955 e. N terminus of GLP-1. ........................................................... 966 III. Glucagon-Like Peptide 1 Receptor .......................................................... 967 A. Discovery. ............................................................................. 967 1. Receptor Cloning. ................................................................. 967 2. Receptor Expression. ................................................................ 967 3. Receptor Biosynthesis................................................................ 967 B. Structure. ............................................................................. 968 1. N-Terminal Domain. ................................................................ 969 a. Structure determination of the N-terminal ECD................................... 969 b. Site-directed mutagenesis of the ECD. ......................................... 969 2. Seven-Transmembrane Domain. ..................................................... 969 a. Structure of the 7TMD. .......................................................... 969 b. Mutagenesis of the 7TMD. ..................................................... 976 i. TM1 (S1291.24b-L1671.62b).................................................... 976 ii. ICL1 (G168-C174). .......................................................... 976 iii. TM2 (T1752.45b-L2012.71b).................................................... 976 iv. ECL1 (K202-L218). ......................................................... 977 v. TM3 (S2193.22b-A2563.59b).................................................... 977 vi. ICL2 (F257-I265)............................................................ 978 vii. TM4 (F2664.42b-Y2914.62b).................................................... 978 viii. ECL2 (E292-Y305). ......................................................... 978 ix. TM5 (W3065.36b-K3365.66b)................................................... 978 x. ICL3 (A337-T343). .......................................................... 979 xi. TM6 (D3446.33b-F3696.58b)................................................... 979 xii. ECL3 (V370-G377). ......................................................... 979 xiii. TM7 (Y3787.33b-Y4027.57b).................................................... 979 xiv. C terminus (C404-S463). .................................................... 979 C. Receptor Function ...................................................................... 979 1. Signaling. ........................................................................... 980 a. Recombinant cells. ............................................................... 980 b. Pancreatic b cells................................................................. 980 i. Insulin Secretion. ........................................................... 980 ii. Insulin Synthesis and Storage. .............................................. 981 iii. b Cell Survival, Proliferation, and Neogenesis.. .............................. 981 c. Extrapancreatic signaling.. ..................................................... 982 i. Liver........................................................................ 982 ii. Kidney. ..................................................................... 982 iii. Adipocytes. ................................................................. 983 iv. Nervous System.. ........................................................... 983 v. Cardiovascular System. ..................................................... 983 2. Ligand-Directed Signal Bias. ..................................................... 983 a. Peptide-mediated signal bias. .................................................... 983 b. Nonpeptide-mediated bias. ..................................................... 984 ABBREVIATIONS: Ab, amyloid b protein; AD, Alzheimer’s disease; Aib, aminoisobutyric acid; AMPK, AMP-activated protein kinase; BCM, b cell mass; BETP, 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine; CD, circular dichroism; CHI, congenital hyperinsulinism; CHL, Chinese hamster lung; CHO, Chinese hamster ovary; CICR, calcium-induced calcium release; CNS, central nervous system; CREB, cAMP response element-binding protein; CRF1R, corticotropin-releasing
Recommended publications
  • Endothelin System and Therapeutic Application of Endothelin Receptor
    xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved
    [Show full text]
  • Exenatide QW: a New Treatment Option for Type 2 Diabetes Offering Ease of Use, Improved Efficacy, and Reduced Side Effects
    FEATURE ARTICLE Commentary: Exenatide QW: A New Treatment Option for Type 2 Diabetes Offering Ease of Use, Improved Efficacy, and Reduced Side Effects Charles F. Shaefer, Jr., MD Editor’s note: Once-weekly exenatide, (also called incretin mimetics) cur- with GLP-1 receptor agonists is the which has recently been approved for rently in use.3,4 only form of anti-diabetes therapy patients with type 2 diabetes, has great Validation of the acceptance offering proven weight loss. Finally, potential as a new diabetes therapy in clinical practice of GLP-1 GLP-1 receptor agonist therapy is in the primary care setting. This receptor agonists can be found in one of the recommended treatment commentary and the feature article that the recently released American strategies offering a low incidence of follows it (p. 95) offer an overview of Diabetes Association (ADA)/ hypoglycemia, an important aspect this new therapeutic tool and important European Association for the Study of diabetes therapy learned from the insights about its clinical utility. In the of Diabetes (EASD) position state- Action to Control Cardiovascular interest of transparency, however, we ment on the management of type 2 Risk in Diabetes trial.6 want to point out that the authors of diabetes, which placed these drugs As clinicians consider what to do both articles are affiliated with Amylin alongside older, well-accepted agents when metformin and lifestyle change Pharmaceuticals, which manufactures such as sulfonylureas (SUs) and do not adequately control a patient’s exenatide QW and markets it under the thiozolidinediones (TZDs) as a sec- A1C, they frequently ask, “incretin 5 trade name Bydureon.
    [Show full text]
  • GLP-1 Receptor Agonists
    Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. GLP-1 Receptor Agonists Evidence Summary GLP-1 agonists are beneficial for patients with type 2 diabetes and obesity. Some evidence suggests benefits for Alzheimer’s disease. It is unclear whether it is beneficial for individuals without underlying metabolic disease. Semaglutide seems to be most effective for metabolic dysfunction, though liraglutide has more preclinical data for Alzheimer’s disease. Neuroprotective Benefit: Evidence from many preclinical studies and a pilot biomarker study suggest some neuroprotective benefits with GLP-1 agonists. However, whether they may be beneficial for everyone or only a subset of individuals (e.g. diabetics) is unclear. Aging and related health concerns: GLP-1 agonists are beneficial for treating diabetes and cardiovascular complications relating to diabetes. It is not clear whether they have beneficial effects in otherwise healthy individuals. Safety: GLP-1 agonists are generally safe for most people with minor side effects. However, long-term side effects are not known. 1 Availability: Available Dose: Varies - see Chemical formula: C172H265N43O51 (Liraglutide) as a prescription chart at the end of MW: 3751.262 g/mol medicine.
    [Show full text]
  • Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung’S Disease
    RESEARCH ARTICLE Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung’s Disease Ankush Gosain1,2*, Amanda J. Barlow-Anacker1, Chris S. Erickson1, Joseph F. Pierre1, Aaron F. Heneghan1, Miles L. Epstein2, Kenneth A. Kudsk1,3 a11111 1 Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America, 2 Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America, 3 Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America * [email protected] OPEN ACCESS Citation: Gosain A, Barlow-Anacker AJ, Erickson Abstract CS, Pierre JF, Heneghan AF, Epstein ML, et al. (2015) Impaired Cellular Immunity in the Murine Hirschsprung’s disease (HSCR) is characterized by aganglionosis from failure of neural crest Neural Crest Conditional Deletion of Endothelin cell (NCC) migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung’s- Receptor-B ’ Model of Hirschsprung s Disease. PLoS associated enterocolitis (HAEC), with an incidence that is unchanged from the pre-operative ONE 10(6): e0128822. doi:10.1371/journal. pone.0128822 to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hy- Academic Editor: Anatoly V. Grishin, Childrens Hospital Los Angeles, UNITED STATES pothesize that gastrointestinal (GI) mucosal immune defects occur in HSCR that may contrib- ute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/-) resulting in mutants Received: November 12, 2014 with defective NCC migration, distal colonic aganglionosis and the development of enterocoli- Accepted: May 1, 2015 tis.
    [Show full text]
  • The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands
    The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands Clare Louise Wishart Submitted in accordance with the requirements for the degree of Doctor of Philosophy of Science University of Leeds School of Biomedical Sciences Faculty of Biological Sciences September 2013 I Intellectual Property and Publication Statements The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Clare Louise Wishart to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds and Clare Louise Wishart. II Acknowledgments Firstly I would like to offer my sincerest thanks and gratitude to my supervisor, Dr. Dan Donnelly, who has been nothing but encouraging and engaging from day one. I have thoroughly enjoyed every moment of working alongside him and learning from his guidance and wisdom. My thanks go to my academic assessor Professor Paul Milner whom I have known for several years, and during my time at the University of Leeds he has offered me invaluable advice and inspiration. Additionally I would like to thank my academic project advisor Dr. Michael Harrison for his friendship, help and advice. I would like to thank Dr. Rosalind Mann and Dr. Elsayed Nasr for welcoming me into the lab as a new PhD student and sharing their experimental techniques with me, these techniques have helped me no end in my time as a research student.
    [Show full text]
  • The Cardiopulmonary Effects of the Calcitonin Gene- Related Peptide Family Kalsitonin-Geni İle İlişkili Peptit Ailesinin Kardiyopulmoner Etkileri
    Turk J Pharm Sci 2020;17(3):349-356 DOI: 10.4274/tjps.galenos.2019.47123 REVIEW The Cardiopulmonary Effects of the Calcitonin Gene- related Peptide Family Kalsitonin-Geni İle İlişkili Peptit Ailesinin Kardiyopulmoner Etkileri Gökçen TELLİ1, Banu Cahide TEL1, Bülent GÜMÜŞEL2* 1Hacettepe University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey 2Lokman Hekim University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey ABSTRACT Cardiopulmonary diseases are very common among the population. They are high-cost diseases and there are still no definitive treatments. The roles of members of the calcitonin-gene related-peptide (CGRP) family in treating cardiopulmonary diseases have been studied for many years and promising results obtained. Especially in recent years, two important members of the family, adrenomedullin and adrenomedullin2/intermedin, have been considered new treatment targets in cardiopulmonary diseases. In this review, the roles of CGRP family members in cardiopulmonary diseases are investigated based on the studies performed to date. Key words: CGRP family, cardiopulmonary diseases, adrenomedullin, adrenomedullin2/intermedin, pulmonary hypertension ÖZ Kardiyopulmoner hastalıklar toplumda sık görülen, tedavi maliyeti oldukça yüksek ve halen kesin bir tedavisi bulunmayan hastalıklardır. Kalsitonin- geni ile ilişkili peptit (CGRP) ailesinin üyelerinin bir çok kardiyopulmoner hastalıktaki rolleri uzun yıllardır çalışılmakta ve umut vadeden sonuçlar elde edilmektedir. Özellikle son yıllarda CGRP ailesine
    [Show full text]
  • International Union of Pharmacology. XXXV. the Glucagon Receptor Family
    0031-6997/03/5501-167–194$7.00 PHARMACOLOGICAL REVIEWS Vol. 55, No. 1 Copyright © 2003 by The American Society for Pharmacology and Experimental Therapeutics 30106/1047548 Pharmacol Rev 55:167–194, 2003 Printed in U.S.A International Union of Pharmacology. XXXV. The Glucagon Receptor Family KELLY E. MAYO, LAURENCE J. MILLER, DOMINIQUE BATAILLE, STEPHANE´ DALLE, BURKHARD GO¨ KE, BERNARD THORENS, AND DANIEL J. DRUCKER Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois (K.E.M.); Mayo Clinic and Foundation, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, Minnesota (L.J.M.); INSERM U 376, Montpellier, France (D.B., S.D.); Department of Medicine II, Grosshadern, Klinikum der Ludwig-Maximilians, University of Munich, Germany (B.G.); Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland (B.T.); and Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada (D.J.D.) Abstract .............................................................................. 168 I. Introduction ........................................................................... 168 II. Secretin receptor....................................................................... 169 A. Molecular basis for receptor nomenclature ............................................ 169 B. Endogenous agonist................................................................. 169 C. Receptor structure .................................................................
    [Show full text]
  • (GLP-1) in Transgenic Plants
    The Open Biotechnology Journal, 2009, 3, 57-66 57 Open Access A Proficient Approach to the Production of Therapeutic Glucagon-Like Peptide-1 (GLP-1) in Transgenic Plants M. Brandsma1, X. Wang1, H. Diao2,3, S.E. Kohalmi1, A.M. Jevnikar2,3 and S. Ma1,2,3,* 1Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada 2Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada 3Plantigen Inc., 700 Collip Circle, London, Ontario, N6G 4X8, Canada Abstract: Glucagon-like peptide-1 (GLP-1) is a small peptide hormone with potent insulinotropic activity and represents a promising new therapeutic tool for the treatment of diabetes. Like many other therapeutic peptides, GLP-1 is commonly produced using chemical synthesis methods, but is limited by product quantity and cost. The advent of recombinant DNA technology offers the possibility of producing GLP-1 inexpensively and in vast quantities. In this study, transgenic plants were used as a recombinant expression platform for the production of GLP-1 as a large multimeric protein. A synthetic gene encoding ten sequential tandem repeats of GLP-1 sequence (GLP-1x10) was produced and introduced into tobacco plants. Transcriptional expression of the GLP1x10 gene in transgenic plants was confirmed by RT-PCR. Western blot analysis showed that the GLP-1x10 protein efficiently accumulated in transgenic plants, with an accumulation level as high as 0.15% of total soluble protein in leaves. Importantly, insulin secretion assays using a mouse pancreatic cell line (MIN6), showed that plant-derived GLP-1 in its synthetic decamer form, retained its ability to stimulate cellular insulin secretion, although with reduced efficacy.
    [Show full text]
  • University of Groningen Genetics Dissection and Functional
    University of Groningen Genetics dissection and functional studies in Hirschsprung disease Sribudiani, Yunia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Sribudiani, Y. (2011). Genetics dissection and functional studies in Hirschsprung disease Groningen: s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Genetic Dissection and Functional Studies in Hirschsprung Disease Yunia Sribudiani Genetic Dissection and Functional Studies in Hirschsprung Disease Y. Sribudiani PhD Thesis – Department of Genetics University Medical Center Groningen, University of Groningen Groningen, the Netherlands This study was financially supported by University of Groningen and Research Institute GUIDE. ISBN/EAN: 978-94-6182-039-6 Cover Ilustration: Ella Elviana, www.ellasworks.blogspot.com Cover & book layout: Briyan B Hendro, www.brianos.daportfolio.com Printed by: Off Page, Amsterdam, www.offpage.nl Printing of this thesis was financially supported by: University of Groningen, GUIDE and Department of Genetics - UMCG.
    [Show full text]
  • Ectopic Expression of Glucagon-Like Peptide 1 for Gene Therapy of Type II Diabetes
    Gene Therapy (2007) 14, 38–48 & 2007 Nature Publishing Group All rights reserved 0969-7128/07 $30.00 www.nature.com/gt ORIGINAL ARTICLE Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes GB Parsons, DW Souza, H Wu, D Yu, SG Wadsworth, RJ Gregory and D Armentano Department of Molecular Biology, Genzyme Corporation, Framingham, MA, USA Glucagon-like peptide 1 (GLP-1) is a promising candidate for lowered both the fasting and random-fed hyperglycemia the treatment of type II diabetes. However, the short in vivo present in these animals. Because the insulinotropic actions half-life of GLP-1 has made peptide-based treatments of GLP-1 are glucose dependent, no evidence of hypogly- challenging. Gene therapy aimed at achieving continuous cemia was observed. Improved glucose homeostasis was GLP-1 expression presents one way to circumvent the rapid demonstrated by improvements in %HbA1c (glycated he- turnover of GLP-1. We have created a GLP-1 minigene that moglobin) and in glucose tolerance tests. GLP-1-treated can direct the secretion of active GLP-1 (amino acids 7–37). animals had higher circulating insulin levels and increased Plasmid and adenoviral expression vectors encoding the 31- insulin immunostaining of pancreatic sections. GLP-1-treated amino-acid peptide linked to leader sequences required for ZDF rats showed diminished food intake and, in the first few secretion of GLP-1 yielded sustained levels of active GLP-1 weeks following vector administration, a diminished weight that were significantly greater than endogenous levels. gain. These results demonstrate the feasibility of gene Systemic administration of expression vectors to animals therapy for type II diabetes using GLP-1 expression vectors.
    [Show full text]
  • G-Protein Coupled Receptors in Lipid Rafts and Caveolae: How, When and Why Do They Go There?
    325 G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? B Chini and M Parenti1 CNR Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Milan, Italy 1Department of Experimental and Environmental Medicine and Medical Biotechnologies, University of Milano-Bicocca, Monza, Italy (Requests for offprints should be addressed to B Chini; Email: [email protected]) Abstract This review describes the advances in our understanding of the role of G-protein coupled receptor (GPCR) localisation in membrane microdomains known as lipid rafts and caveolae. The growing interest in these specialised regions is due to the recognition that they are involved in the regulation of a number of cell functions, including the fine-tuning of various signalling molecules. As a number of GPCRs have been found to be enriched in lipid rafts and/or caveolae by means of different experimental approaches, we first discuss the pitfalls and uncertainties related to the use of these different procedures. We then analyse the addressing signals that drive and/or stabilise GPCRs in lipid rafts and caveolae, and explore the role of rafts/caveolae in regulating GPCR trafficking, particularly in receptor exo- and endocytosis. Finally, we review the growing evidence that lipid rafts and caveolae participate in the regulation of GPCR signalling by affecting both signalling selectivity and coupling efficacy. Journal of Molecular Endocrinology (2004) 32, 325–338 Introduction cascade (Dykstra et al. 2001, Sedwick & Altman 2002, Werlen & Palmer 2002), unravelling the role Lipid rafts and caveolae have been found to be of rafts and caveolae in the functional regulation of involved in the regulation of various cell functions, other signalling components is still at its very including the homeostasis of cholesterol (Ikonen & beginning.
    [Show full text]
  • 125469Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 125469Orig1s000 SUMMARY REVIEW Division Director Review 1. Introduction On September 18, 2013 Eli Lilly and Company submitted a Biologics License Application (BLA) for Trulicity under section 351 of the Public Health Service Act. The applicant is seeking to indicate Trulicity as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Trulicity is a solution for injection containing either 0.75 or 1.5 mg of dulaglutide [i.e., a glucagon-like peptide 1 (GLP-1) receptor agonist]. Trulicity is to be administered by subcutaneous injection at once weekly intervals. Once approved, Trulicity will be the fifth GLP-1 agonist indicated for use in the management of patients with type 2 diabetes mellitus in the United States. This document serves as the division director’s memorandum for the application. 2. Background The drug substance in Trulicity is dulaglutide. In this memorandum, I will use Trulicity and dulaglutide interchangeably. Dulaglutide is a homodimer that consists of two identical polypeptide chains linked to each other by a disulfide bond. The polypeptide chain is a fusion protein that consists of a glucagon-like peptide 1 (GLP-1) variant, a linker, and the Fc portion of a human IgG4 variant antibody. The GLP-1 analog portion of dulaglutide is (b) (4) homologous to native human GLP-1 (7-37) (b) (4) (b) (4) Dulaglutide was demonstrated to bind and activate the GLP-1 receptor. The biological effects of endogenous GLP-1 on glucose homeostasis include augmentation of glucose stimulated insulin secretion, inhibition of glucagon release, and delay of gastric emptying.
    [Show full text]