Taxonomy and Biodiversity of the Genus Oscillatoria Vauch. Ex Gom. (Cyanoprokaryota: Oscillatoriales) with Ecological Notes From

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Biodiversity of the Genus Oscillatoria Vauch. Ex Gom. (Cyanoprokaryota: Oscillatoriales) with Ecological Notes From Brazilian Journal of Biological Sciences, 2017, v. 4, No. 7, p. 89-101. ISSN 2358-2731 https://dx.doi.org/10.21472/bjbs.0407010 Taxonomy and biodiversity of the genus Oscillatoria Vauch. ex Gom. (Cyanoprokaryota: Oscillatoriales) with ecological notes from Hooghly in West Bengal, India Nilu Halder Department of Botany, Raja Peary Mohan College, Uttarpara-712258, Hooghly, West Bengal, India. Email: [email protected]. Abstract. Research articles in the reference list regarding investigation or exploration of Oscillatoriales exhibited that Received taxonomic study of freshwater blue-green algae has been a subject December 03, 2016 of interest of research workers and professional scientists for more than one century in India. Oscillatoria Vauch. ex Gom. Accepted (Cyanoprokaryota: Oscillatoriales) is a dominant and ubiquitous June 24, 2017 blue-green alga in Hooghly District of West Bengal, India. Its thallus is consists of unsheathed trichome and contains more than Released 20 cells in a trichome. The recent study was dealt with the June 30, 2017 taxonomic enumeration of five species of the genus (O. princeps, Open Acess O. curviceps, O. sancta, O. limosa, and O. jenensis) which were Full Text Article collected from different freshwater aquatic ecosystems of this district and they were described with ecological data, geographical distributions and colored microphotographs. Here, the relationships between the water chemistry and their occurrences had been also discussed. The analysis of important physico-chemical properties of water revealed that species of Oscillatoria prefer to grow in those water bodies prevailing alkaline pH, sufficient to meet the essential nutrients and contain hard and polluted water. Taxonomy; Oscillatoria; West Bengal; India. Keywords: ORCID 0000-0002-9689-3952 Nilu Halder Introduction sufficient for abundant growth, reproduction and to complete their life Indeed, blue-green algae cycles (Kasthuri et al., 2016). They are (Cyanoprokaryota) are one of the most considered the first organism to release successful and primitive microbes or plant elemental oxygen (O2) into the primitive groups in our planet since the origin of life. atmosphere (Gupta et al., 2006) and They resemble with eukaryotic algae as primary colonizer in bare areas of rock and well as prokaryotic bacteria because they soil (Issa et al., 2014). Ultraviolet ray share some common features of both the absorbing sheath and a combination of groups and included in the Kingdom green and unique blue pigments, probably Monera by Whittaker (1969). Blue-green increase their fitness in the exposed land algae are basically aerobic photoautotrophs, environment (Mur et al., 1999). The although they may be able to live morphological simplicity and occurrence of anaerobically. Only warm temperature, polymorphisms (variations) in nature water, CO2, inorganic substances like sometimes make this plant group difficulty nitrogen and phosphorus and sunlight are (Roger and Reddy, 1984) for identifications ISSN 2358-2731/BJBS-2016-0074/4/7/10/89 Braz. J. Biol. Sci. http://revista.rebibio.net 90 Halder under light microscopy. They show end cells rounded, hemispherical, variations in thallus organizations sometimes capitate or with narrow (unicellular, colonial to filamentous) and calyptras, vii) vegetative reproduction measurement of vegetative as well as occurs by means of cell division that is reproductive structures due to response of perpendicular to the long axis of a trichome changes in environmental conditions. They or formation of hormogonia or trichome can thrive or adapt in adverse climatic disintegration, e viii) heterocyst is lacking conditions of any ecological ecosystems, in trichomes (Komárek and Anagnostidis, being photosynthetic prokaryotes (Seal et 2005). al., 2015; Halder, 2016a) and possessing Seasonal variations of water simple thallus structures. Oscillatoria properties (Halder, 2016b) and tropical Vauch. ex Gom. is a very common and climatic/environmental conditions (Halder dominant blue-green algal genus of and Sinha, 2013a,b; Halder, 2015a) play Cyanophyceae and it has been found to important roles in the distribution of occur in almost all the types of freshwater cyanobacterial algae in natural water habitats like ponds, moats, irrigation bodies. Few ecological parameters like channels, water logged rice fields, lakes, temperature, light intensity and dissolved rivers, canals or in any polluted water solids have a great impact on growth stage bodies of urban areas throughout the world. and occurrence of blue-green algae It is a highly pollution tolerant blue-green (Kullberg, 1977). Maximum growth is alga (Patrick, 1965). Occasionally, they are attained by most blue-green algae in noticed on water surface as dark blue or summer i.e. at higher temperature in black algal mass/scum and their colonies comparison to green algae and diatoms may buoyant as containing of air bubbles. (Robarts and Zohary, 1987; Mur et al., Therefore, they can blow by gentle wind 1999). A low ratio between nitrogen and from one place to another in aquatic bodies. phosphorus compounds in water may favor Globally, there are 304 species of this the development of this algal group (Smith, genus which are taxonomically accepted in 1983; Harris et al., 2016). algae database (Guiry and Guiry, 2016) and The alga has a considerable till date ca. 128 species of this genus have importance to human beings. Ecologically, been reported from different places of India it plays crucial role in the treatment of (Tiwari et al., 2007). The species of sewage effluents, bioremediations and Oscillatoria grow in monsoon. In winter, nutrient recycling. Besides these, the alga they are mostly observed in water channels, also showed in vitro antimicrobial sewage water while in summer their (Prabakaran, 2011) and antibacterial effects distribution observed only in perennial against the pathogenic microbes (Abd El- drains and few water reservoirs (Kesarwani Aty et al., 2014) due to having et al., 2015). The genus is characterized by antimicrobial substances like terpenes, these common features, i) thallus is phenols and phenolic compounds in their predominantly blue-green or may be cells like other algae (Halder and Sinha, blackish, grayish, olive-green; consists of 2014a; Sinha et al., 2015; Halder, 2015b). trichome and sometimes forms macroscopic Thus, it may be utilized as a promising mat, rarely solitary or in small groups, ii) source to manufacture antibacterial drugs in trichomes flat, simple, uniseriate, usually pharmaceutical industry in future. It should fine, straight or slightly waved, cylindrical be mentioned that recently, different and show gliding motion under light, iii) species of Cyanobacteria have been using constricted or not constricted at cross walls, for extraction of cyanobacterial restriction attenuated or not attenuated to the ends, iv) endonucleases that generally recognize sheath absent or thin, colorless only in palindromic sequences in DNA, cleave suboptimal (extreme) conditions, v) cells within or near their recognition sequences always shorter than wide, without aerotopes and produce DNA-fragments of different but with fine granulation (sometimes lengths. Among them, AvaI is well known prominent at the cross walls), vi) apical or restriction enzyme from Anabeaena Braz. J. Biol. Sci., 2017, v. 4, No. 7, p. 89-101. Taxonomy and biodiversity of the genus Oscillatoria 91 variabilis. Saravanan et al. (2003) purified been already provided earlier in few (through column chromatography) and research articles (Halder and Sinha, 2014b; characterized a new type II restriction Sinha and Halder, 2014; Halder, 2015c). endonuclease, OfoI from a nonheterocystous cyanobacterium Microscopy Oscillatoria foreaui and the recognition Microscopic study of the five sequence has been detected with the help of species of Oscillatoria Vauch. ex Gom. was primer extension analysis. This enzyme made by examining them under Olympus recognizes and cleaves the palindromic microscope (Model-CH20i). Microphoto- hexanucleotide sequence 5’-C↓YCGRG-3’ graphs were taken using Canon Power Shot in DNA and producing 5’-protruding ends A480 camera. The samples were preserved of defined sizes. in 4% formalin and the voucher specimens There are many detailed taxonomic were deposited in the Departmental floristic reports and information on the Herbarium of R. P. M. College, Uttarpara, genus from India including those of Kamat Hooghly, West Bengal. (1963), Anand (1989), Tiwari (1975), Mahajan and Patel (1989), Kumawat and Identification Jawale (2006), Adhikary (2007), Goyal et This was done with the aid of al. (2008), Deka and Sarma (2011), relevant monographs, manuals and recent Kesarwani et al. (2015) and many other literatures (Gomont, 1892; Geitler, 1932; published scientific papers. Abroad India, Desikachary, 1959; Prescott, 1962; Prasad the commendable algological work of and Srivastava, 1992; Gupta, 2005; Jain, Komarek and Anagnostidis (2005) and 2015; Kesarwani et al., 2015). McGregor (2007) may be mentionable regarding on the Order Oscillatoriales. Water analysis Some previous workers who contributed on The temperature (°C) and pH of the the taxonomy of the genus from this state freshwater were recorded at the sites with (West Bengal) may be cited Martens the help of mercury thermometers and (1871), Prain (1905), Biswas (1926, 1932), portable pH meter. The other limnological Pal and Santra (1985, 1987), Santra et al. parameters such as nitrate-nitrogen 3- (1988), Sen and Gupta (1987, 1998),
Recommended publications
  • Oscillatoriales, Microcoleaceae), Nuevo Reporte Para El Perú
    Montoya et al.: Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Arnaldoa 24 (1): 369 - 382, 2017 ISSN: 1815-8242 (edición impresa) http://doi.org/10.22497/arnaldoa.241.24119 ISSN: 2413-3299 (edición online) Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Phenotypic diversity of the cyanobacterium Pseudo- phormidium tenue (Oscillatoriales, Microcoleaceae), new record for Peru Haydee Montoya T., José Gómez C., Mauro Mariano A., Enoc Jara P., Egma Mayta H., Mario Benavente P. Museo de Historia Natural, Departamento de Simbiosis Vegetal, UNMSM. Av. Arenales 1256. Apartado 14-0434. Lima 14, PERÚ. Instituto de Investigación de Ciencias Biológicas, Facultad de CC. Biológicas, UNMSM [email protected], [email protected], [email protected] [email protected] 24 (1): Enero - Junio, 2017 369 Este es un artículo de acceso abierto bajo la licencia CC BY-NC 4.0: https://creativecommons.org/licenses/by-nc/4.0/ Montoya et al.: Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Recibido: 20-I-2017; Aceptado: 15-III-2017; Publicado: VI-2017; Edición online: 05-VI-2017 Resumen Los ecosistemas desérticos costeros tropicales están distribuidos ampliamente en el oeste de Sudamérica. No obstante las tierras áridas de esta región, la disponibilidad hídrica de la humedad proveniente de las neblinas a nivel del océano Pacífico acarreadas hacia las colinas (lomas) y las garúas anuales invernales fluctuantes favorecen el desarrollo de comunidades cianobacteriales extremas. El área de evaluación fue las Lomas de Pachacámac, al sur de Lima, y las colecciones cianobacteriales estándar (costras, biofilms o matas terrestres) fueron realizadas irregularmente en 1995 y 2012.
    [Show full text]
  • Temporal Control of Trichome Distribution by Microrna156-Targeted SPL Genes in Arabidopsis Thaliana W OA
    This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana W OA Nan Yu,a,b,1 Wen-Juan Cai,a,b,1 Shucai Wang,c Chun-Min Shan,a,b Ling-Jian Wang,a and Xiao-Ya Chena,2 a National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, 200032 Shanghai, P.R. China b Graduate School of Chinese Academy of Sciences, 200032 Shanghai, P.R. China c Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and are targeted by microRNA 156 (miR156), temporally control the trichome distribution during flowering. Plants overexpressing miR156 developed ectopic trichomes on the stem and floral organs. By contrast, plants with elevated levels of SPLs produced fewer trichomes. During plant development, the increase in SPL transcript levels is coordinated with the gradual loss of trichome cells on the stem.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Planktothrix Agardhii É a Mais Comum
    Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters Catarina Isabel Prata Pereira Leitão Churro Doutoramento em Biologia Departamento Biologia 2015 Orientador Vitor Manuel de Oliveira e Vasconcelos, Professor Catedrático Faculdade de Ciências iv FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters The research presented in this thesis was supported by the Portuguese Foundation for Science and Technology (FCT, I.P.) national funds through the project PPCDT/AMB/67075/2006 and through the individual Ph.D. research grant SFRH/BD65706/2009 to Catarina Churro co-funded by the European Social Fund (Fundo Social Europeu, FSE), through Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional (POPH – QREN) and Foundation for Science and Technology (FCT). The research was performed in the host institutions: National Institute of Health Dr. Ricardo Jorge (INSA, I.P.), Lisboa; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto and Centre for Microbial Resources (CREM - FCT/UNL), Caparica that provided the laboratories, materials, regents, equipment’s and logistics to perform the experiments. v FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters vi FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Professor Vitor Vasconcelos for accepting to embark in this research and supervising this project and without whom this work would not be possible. I am also greatly thankful to my co-supervisor Elisabete Valério for the encouragement in pursuing a graduate program and for accompanying me all the way through it.
    [Show full text]
  • Microcoleus Pseudautumnalis Sp. Nov. (Cyanobacteria, Oscillatoriales) Producing 2-Methylisoborneol
    Bull. Natl. Mus. Nat. Sci., Ser. B, 45(3), pp. 93–101, August 22, 2019 Microcoleus pseudautumnalis sp. nov. (Cyanobacteria, Oscillatoriales) producing 2-methylisoborneol Yuko Niiyama* and Akihiro Tuji Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan * E-mail: [email protected] (Received 13 May 2019; accepted 26 June 2019) Abstract A new species, Microcoleus pseudautumnalis, producing both 2-methylisoborneol (2-MIB) and geosmin is described. We have conducted a systematic study of a bad-smelling, 2-MIB producing planktic Pseudanabaena species in Japan and described four new species (P. foetida, P. subfoetida, P. cinerea, and P. yagii). In the course of this study, we found another kind of filamentous cyanobacteria with a bad smell in a plankton sample collected from a pond in Japan. The morphology of M. pseudautumnalis resembles that of M. autumnalis (Trevisan ex Gomont) Strunecký, Komárek et Johansen (basionym: Phormidium autumnale Trevisan ex Gomont). The sheath is thin and always contains only one trichome. Trichomes are immotile, gray- ish-green, not constricted at the cross-walls, not attenuated or attenuated towards the ends with truncated or capitated apical cells, and sometimes with calyptrae that are relatively wider (6.9– 7.6 μm) than those of M. autumnalis. The phylogeny of the 16S rRNA gene of M. pseudautumnalis revealed that it is in the clade of the genus Microcoleus and contains an 11-bp insert. Microcoleus autumnalis s. str. is said to lack this insert. Microcoleus pseudautumnalis has four kinds of 2-MIB genes, and the phylogeny of this taxon is different from those of Pseudanabaena sp.
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Benthic Cyanobacteria (Oscillatoriaceae) That Produce Microcystin-LR, Isolated from Four Reservoirs in Southern California
    ARTICLE IN PRESS WATER RESEARCH 41 (2007) 492– 498 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California George Izaguirrea,Ã, Anne-Dorothee Jungblutb, Brett A. Neilanb aWater Quality Laboratory, 700 Moreno Avenue, Metropolitan Water District of Southern California, La Verne, CA 91750, USA bSchool of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2053 New South Wales, Australia article info ABSTRACT Article history: Cyanobacteria that produce the toxin microcystin have been isolated from many parts of Received 9 November 2005 the world. Most of these organisms are planktonic; however, we report on several Received in revised form microcystin-producing benthic filamentous cyanobacterial isolates from four drinking- 3 October 2006 water reservoirs in southern California (USA): Lake Mathews, Lake Skinner, Diamond Valley Accepted 4 October 2006 Lake (DVL), and Lake Perris. Some samples of benthic material from these reservoirs tested Available online 28 November 2006 positive for microcystin by an ELISA tube assay, and all the positive samples had in Keywords: common a green filamentous cyanobacterium 10–15 mm in diameter. Seventeen unialgal Cyanobacteria strains of the organism were isolated and tested positive by ELISA, and 11 cultures of these À1 Cyanotoxins strains were found to contain high concentrations of microcystin-LR (90–432 mgL ). The Lyngbya cultures were analyzed by protein phosphatase inhibition assay (PPIA) and HPLC with Microcystin photodiode array detector (PDA) or liquid chromatography/mass spectrometry (LC/MS). Phormidium Microcystin per unit carbon was determined for six cultures and ranged from 1.15 to 4.15 mgmgÀ1 C.
    [Show full text]
  • Trichome Biomineralization and Soil Chemistry in Brassicaceae from Mediterranean Ultramafic and Calcareous Soils
    plants Article Trichome Biomineralization and Soil Chemistry in Brassicaceae from Mediterranean Ultramafic and Calcareous Soils Tyler Hopewell 1,*, Federico Selvi 2 , Hans-Jürgen Ensikat 1 and Maximilian Weigend 1 1 Nees-Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, D-53115 Bonn, Germany; [email protected] (H.-J.E.); [email protected] (M.W.) 2 Laboratori di Botanica, Dipartimento di Scienze Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, P.le Cascine 28, I-50144 Firenze, Italy; federico.selvi@unifi.it * Correspondence: [email protected] Abstract: Trichome biomineralization is widespread in plants but detailed chemical patterns and a possible influence of soil chemistry are poorly known. We explored this issue by investigating tri- chome biomineralization in 36 species of Mediterranean Brassicaceae from ultramafic and calcareous soils. Our aims were to chemically characterize biomineralization of different taxa, including metallo- phytes, under natural conditions and to investigate whether divergent Ca, Mg, Si and P-levels in the soil are reflected in trichome biomineralization and whether the elevated heavy metal concentrations lead to their integration into the mineralized cell walls. Forty-two samples were collected in the wild while a total of 6 taxa were brought into cultivation and grown in ultramafic, calcareous and standard potting soils in order to investigate an effect of soil composition on biomineralization. The sampling included numerous known hyperaccumulators of Ni. EDX microanalysis showed CaCO3 to be the dominant biomineral, often associated with considerable proportions of Mg—independent of soil type and wild versus cultivated samples. Across 6 of the 9 genera studied, trichome tips were Citation: Hopewell, T.; Selvi, F.; mineralized with calcium phosphate, in Bornmuellera emarginata the P to Ca-ratio was close to that Ensikat, H.-J.; Weigend, M.
    [Show full text]
  • Seeking the True Oscillatoria: a Quest for a Reliable Phylogenetic and Taxonomic Reference Point
    Preslia 90: 151–169, 2018 151 Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point Hledání fylogenetického a taxonomického referenčního bodu pro rod Oscillatoria RadkaMühlsteinová1,2,TomášHauer1,2,PaulDe Ley3 &NicolePietrasiak4 1Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic, CZ-370 05, e-mail: [email protected]; 2The Czech Academy of Sciences, Institute of Botany, Centre for Phycology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic, e-mail: [email protected]; 3Department of Nematology, University of California Riverside, Riverside, California 92521, USA, e-mail: [email protected]; 4Department of Plant and Environmental Science, New Mexico State University, Skeen Hall, Box 30003 MSC 3Q, Las Cruces, New Mexico 88003, USA, e-mail: [email protected] Mühlsteinová R., Hauer T., De Ley P. & Pietrasiak N. (2018): Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point. – Preslia 90: 151–169. Reliable taxonomy of any group of organisms cannot be performed without phylogenetic refer- ence points. In the historical “morphological era”, a designated type specimen was considered fully sufficient but nowadays this principle can prove to be problematic and challenging espe- cially when studying microscopic organisms. However, within the last decades there has been tre- mendous advancement in microscopy imaging and molecular biology offering additional data to systematic studies in ways that are revolutionizing cyanobacterial taxonomy. Unfortunately, most of the existing herbarium specimens or even iconotypes of old established taxa often cannot be subjects of modern analytic methods. Such is the case for the widely known cyanobacterial genus Oscillatoria which was introduced by Vaucher in 1803.
    [Show full text]
  • First Insights Into the Impacts of Benthic Cyanobacterial Mats on Fish
    www.nature.com/scientificreports OPEN First insights into the impacts of benthic cyanobacterial mats on fsh herbivory functions on a nearshore coral reef Amanda K. Ford 1,2*, Petra M. Visser 3, Maria J. van Herk3, Evelien Jongepier 4 & Victor Bonito5 Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they infuence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantifed the coverage of various BCM-types and estimated the biomass of key herbivorous fsh functional groups. Using remote video observations, we compared fsh herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fsh (opportunistically) consuming BCMs. Samples of diferent BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fsh biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were signifcantly reduced on BCM-dominated substratum, and no fsh were unambiguously observed consuming BCMs. Seven diferent BCM-types were identifed, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacifc reefs. Tough scarcely mentioned in the literature a decade ago, benthic cyanobacterial mats (BCMs) are receiving increasing attention from researchers and managers as being a nuisance on tropical coral reefs worldwide1–4.
    [Show full text]
  • Mapping of Qtls for Glandular Trichome from Lycopersicon
    Heredity 75 (1995) 425—433 Received 20Apr11 1995 Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum x Lycopersicon hirsutum f. glabratum CHRIS MALIEPAARD*, NOORTJE BAS, SJAAK VAN HEUSDEN, JOOST KOS, GERARD PET, RUUD VERKERK, RIA VRIELINK, PIM ZABELj- & PIM LINDHOUT DL 0-Centre for P/ant Breeding and Reproduction Research (CPRO-DLO), P0 Box 16, 6700 AA Wageningen, Department of Molecular Biology, Wageningen Agricultural University, Dreijenlean 3, 6703 HA Wageningen and Department of Plant Breeding, Wageningen Agricultural University, P0 Box 386, 6700 AJ Wageningen, The Netherlands AnF2 of an interspecific cross between cultivated tomato (Lycopersicon esculentum cv. Money- maker) and L. hirsutum f. glabratum was used to generate an RFLP linkage map. Distortion of single locus segregation (1:2:1) was observed for a number of markers from different chromo- somes, always with a prevalence for L. hirsutum f. glabratum alleles. To identify quantitative trait loci (QTL5) for greenhouse whitefly (Trialeurodes vaporariorum) resistance in this F2 population, life history components of the greenhouse whitefly population were evaluated. Two OTLs affecting oviposition rate mapped to chromosome 1 (Tv-i) and 12 (Tv-2). F3 lines homozygous for either the L. esculentum allele or the L. hirsutum f. glabratum allele at one or both loci confirmed the effects of Tv-i and Tv-2. The F2 population was also evaluated for segregation of type IV and type VI glandular trichome densities. Two QTLs affecting trichome type IV density (TriIV-i and TriIV-2) and one affecting type VI trichome density (TriJ/I-i) mapped to chromosomes 5, 9 and 1, respectively.
    [Show full text]
  • Filamentous Cyanobacteria from Western Ghats of North Kerala, India
    Bangladesh J. Plant Taxon. 28(1): 83‒95, 2021 (June) https://doi.org/10.3329/bjpt.v28i1.54210 © 2021 Bangladesh Association of Plant Taxonomists FILAMENTOUS CYANOBACTERIA FROM WESTERN GHATS OF NORTH KERALA, INDIA 1 V. GEETHU AND MAMIYIL SHAMINA Cyanobacterial Diversity Division, Department of Botany, University of Calicut, Kerala, India Keywords: Cyanobacteria, Filamentous, Peruvannamuzhi, Western Ghats. Abstract Cyanobacteria are Gram negative, photosynthetic and nitrogen fixing microorganisms which contribute much to our present-day life as medicines, foods, biofuels and biofertilizers. Western Ghats are the hotspots of biodiversity with rich combination of microbial flora including cyanobacteria. Though cosmopolitan in distribution, their abundance in tropical forests are not fully exploited. To fill up this knowledge gap, the present research was carried out on the cyanobacterial flora of Peruvannamuzhi forest and Janaki forests of Western Ghats in Kozhikode District, North Kerala State, India. Extensive specimen collections were conducted during South-West monsoon (June to September) and North-East monsoon (October to December) in the year 2019. The highest diversity of cyanobacteria was found on rock surfaces. A total of 18 cyanobacterial taxa were identified. Among them filamentous heterocystous forms showed maximum diversity with 10 species followed by non- heterocystous forms with 8 species. The highest number of cyanobacteria were identified from Peruvannamuzhi forest with 15 taxa followed by Janaki forest with 3 taxa. The non- heterocystous cyanobacterial genus Oscillatoria Voucher ex Gomont showed maximum abundance with 4 species. In this study we reported Planktothrix planktonica (Elenkin) Agagnostidis & Komárek 1988, Oscillatoria euboeica Anagnostidis 2001 and Nostoc interbryum Sant’Anna et al. 2007 as three new records from India.
    [Show full text]