Benthic Cyanobacteria (Oscillatoriaceae) That Produce Microcystin-LR, Isolated from Four Reservoirs in Southern California

Total Page:16

File Type:pdf, Size:1020Kb

Benthic Cyanobacteria (Oscillatoriaceae) That Produce Microcystin-LR, Isolated from Four Reservoirs in Southern California ARTICLE IN PRESS WATER RESEARCH 41 (2007) 492– 498 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California George Izaguirrea,Ã, Anne-Dorothee Jungblutb, Brett A. Neilanb aWater Quality Laboratory, 700 Moreno Avenue, Metropolitan Water District of Southern California, La Verne, CA 91750, USA bSchool of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2053 New South Wales, Australia article info ABSTRACT Article history: Cyanobacteria that produce the toxin microcystin have been isolated from many parts of Received 9 November 2005 the world. Most of these organisms are planktonic; however, we report on several Received in revised form microcystin-producing benthic filamentous cyanobacterial isolates from four drinking- 3 October 2006 water reservoirs in southern California (USA): Lake Mathews, Lake Skinner, Diamond Valley Accepted 4 October 2006 Lake (DVL), and Lake Perris. Some samples of benthic material from these reservoirs tested Available online 28 November 2006 positive for microcystin by an ELISA tube assay, and all the positive samples had in Keywords: common a green filamentous cyanobacterium 10–15 mm in diameter. Seventeen unialgal Cyanobacteria strains of the organism were isolated and tested positive by ELISA, and 11 cultures of these À1 Cyanotoxins strains were found to contain high concentrations of microcystin-LR (90–432 mgL ). The Lyngbya cultures were analyzed by protein phosphatase inhibition assay (PPIA) and HPLC with Microcystin photodiode array detector (PDA) or liquid chromatography/mass spectrometry (LC/MS). Phormidium Microcystin per unit carbon was determined for six cultures and ranged from 1.15 to 4.15 mgmgÀ1 C. Phylogenetic analysis of four cultures from Lake Skinner and DVL using cyanobacterial-specific PCR and sequencing of the partial 16S rRNA gene suggested the highest similarity to an unidentified cyanobacterium in the oscillatoriales, and to a Phormidium sp. Morphologically, some of the isolates were similar to Oscillatoria, and others resembled Lyngbya. The significance of these organisms lies in the relative scarcity of known toxin producers among freshwater benthic cyanobacteria, and also as a source of cell-bound microcystin in these reservoirs. & 2006 Elsevier Ltd. All rights reserved. 1. Introduction and the occurrence of benthic filamentous cyanobacteria in their water source. Identification of these species has Cyanobacteria that produce the toxin microcystin have been important implications for understanding the ecophysiology isolated from many parts of the world, the majority being of microcystin production and water-quality management. planktonic species (Sivonen and Jones, 1999). The detection of Microcystin is an inhibitor of eukaryotic-type protein large benthic microcystin-producing cyanobacterial popula- phosphatases 1 and 2A, and the target organ is the liver. For À1 tions is rare and to date only a few studies have been microcystins, LD50 levels up to 50 mgkg (i.p. mouse) have reported, such as Mez et al. (1997) and Dasey et al. (2005). been recorded (Botes et al., 1984; Kaya and Watanabe, 1990). Correlations have been made between the poisoning of cattle Microcystin is a cyclic heptapeptide, with a general structure ÃCorresponding author. Tel.: +1 909 392 5127; fax: +1 909 392 5246. E-mail address: [email protected] (G. Izaguirre). 0043-1354/$ - see front matter & 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.watres.2006.10.012 ARTICLE IN PRESS WATER RESEARCH 41 (2007) 492– 498 493 of cyclo-(D-alanine-X-D-MeAsp-Z-Adda-D-glutamate-Mdha). The objectives of this study were to determine the source of D-MeAsp is D-b-erythro-methyl-aspartatic acid, and Mdha is microcystin in benthic material from the reservoirs in N-methyldehydroalanine; X and Z are variable L-amino acids. question, to identify the particular toxin variant(s) involved, So far, more than 70 different types of microcystin have been and to relate the toxin producer to other known toxic identified (Sivonen and Jones, 1999) the most common types cyanobacteria. being microcystin-LR, -RR, and -YR, where the variable amino acids (X and Z) are leucine–arginine and tyrosine. Microcystin production can be found in all cyanobacterial 2. Materials and methods orders; however, it is most often found in cyanobacterial blooms consisting of Microcystis, Planktothrix, and Anabaena. 2.1. Isolation of toxin producer The genus Phormidium, however, is known for the production of novel bioactive compounds which have hepatotoxic and Samples of benthic algal growths were collected by SCUBA neurotoxic effects in mice (Baker et al., 2001; Teneva et al., divers from Lake Mathews, Lake Skinner, DVL, and Lake Perris 2005). Moreover, the production of cyanobacterial alkaloid as part of routine sampling for taste-and-odor monitoring. toxins such as saxitoxin (Teneva et al., 2005) and homo- Samples of algal material were collected in 125 ml plastic anatoxin-a (Lilleheil et al., 1996) has been reported for the bottles at various standard sampling locations, usually at a genus Phormidium. depth of 6 m, and transported to the laboratory the same day. The Metropolitan Water District of southern California A map and description of some of the sites in Lake Mathews (MWDSC) supplies drinking water to about 18 million people can be found in McGuire et al. (1984). For a description of DVL in six counties in the coastal plain of southern California and a discussion of problem cyanobacterial events in that (USA). MWDSC is composed of 26 member agencies, which reservoir, see Izaguirre and Taylor (in press). For screening of are either cities or regional water agencies. Its two sources of samples for microcystin, the samples were shaken vigorously water are the Colorado River and water from northern and two drops of the overlying water were tested using the California, called State Project Water (SPW), delivered through ELISA tube kit. Samples that gave a strong positive response À1 the California Aqueduct. MWDSC operates three reservoirs in (43.0 mgL ) were used for the isolation of the toxin producer. Riverside County: Lake Mathews, Lake Skinner, and Diamond A small amount of well-mixed sample was added to 30 or Valley Lake (DVL). The former is the terminal reservoir of the 50 mL of a modified BG-11 medium (Stanier et al., 1971) with À1 Colorado River system. The other two reservoirs are supplied sodium nitrate at 100 mg L , and cycloheximide added at À1 with a blend of the two waters. In addition, the state 20–40 mg L , in erlenmeyer flasks. The cultures were incu- Department of Water Resources owns and operates Lake bated at 25 1C in an 18 h light/6 h dark cycle, at approximately À2 À1 Perris, a combined drinking-water and recreational lake that 6.9–7.9 mEm s . Flasks were shaded with white paper receives SPW. Lake Mathews is closed to the public, while cylinders to reduce incident light. After 2 days, small clumps Lake Skinner and DVL permit boating and fishing but no body of growth were transferred to an agar medium prepared by contact with the water. Swimming and bathing are allowed in adding the following ingredients to membrane-filtered À1 Lake Perris. (0.45 mm) raw water (SPW) in mg L : NaNO3 100, K2HPO4 40, In the summer and fall of 2001, a number of planktonic and ferric ammonium citrate 3, with purified agar (Difco, À1 cyanobacterial blooms occurred in two reservoirs, Lake Sparks, Maryland) 1%w/v and cycloheximide 20 mg L . Agar Skinner and Silverwood Lake (which consist of SPW). The plates were incubated under the same conditions as the results of analyses performed by Dr. Gregory L. Boyer, SUNY, liquid cultures, and after several days filaments that migrated Syracuse, NY indicated high microcystin concentrations in away from the inoculum were isolated using a 25 mL micro- surface bloom material from Lake Skinner (mean of two pipette and placed in a small volume of modified BG-11 samples was 304 mgLÀ1), and prompted the development of a medium as described in Izaguirre (1992). These cultures were cyanotoxin monitoring program at MWDSC in 2003. Monitor- allowed to develop and then tested for microcystin by the ing involved the use of two ELISA test kits (Envirologix Inc., ELISA tube method using the Envirologix kit mentioned Portland, ME) for the testing of water and attached algal above. samples. In the course of monitoring, it was found that benthic algal samples from Lake Mathews were positive for 2.2. Analysis of microcystin microcystin. Subsequent sampling of the three other reser- voirs, Lake Skinner, DVL, and Lake Perris, also yielded Cultures that tested positive for microcystin by the tube assay microcystin-positive samples. The initial positive samples were examined microscopically and morphological charac- from Lake Mathews contained a variety of filamentous teristics noted. These cultures served to inoculate 30 mL cyanobacteria (including Oscillatoria, Phormidium, Lyngbya, cultures for microcystin analysis. Cultures were harvested for Pseudanabaena, and Spirulina spp.), the colonial Aphanothece, microcystin analysis by measuring the volume and filtering as well as diatoms. Originally, Aphanothece was thought to be through a glass fiber (934-AH, Whatman Inc., Clifton, NJ), and the microcystin producer due to its relation to Microcystis; frozen until shipment. Analyses were performed at the however, further samples revealed no link between micro- laboratory of Dr. Gregory L. Boyer (College of Environmental cystin and this organism. All positive samples had in Science and Forestry, SUNY, Syracuse, NY), under contract common a benthic green filamentous morphotype belonging with MWDSC. Filters were extracted with 50% acidified to the order Oscillatoriales, approximately 10–15 mmin methanol using ultrasound. Microcystin content was diameter with untapered apices. verified and quantified by means of the protein phosphatase Download English Version: https://daneshyari.com/en/article/4486879 Download Persian Version: https://daneshyari.com/article/4486879 Daneshyari.com.
Recommended publications
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Seeking the True Oscillatoria: a Quest for a Reliable Phylogenetic and Taxonomic Reference Point
    Preslia 90: 151–169, 2018 151 Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point Hledání fylogenetického a taxonomického referenčního bodu pro rod Oscillatoria RadkaMühlsteinová1,2,TomášHauer1,2,PaulDe Ley3 &NicolePietrasiak4 1Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic, CZ-370 05, e-mail: [email protected]; 2The Czech Academy of Sciences, Institute of Botany, Centre for Phycology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic, e-mail: [email protected]; 3Department of Nematology, University of California Riverside, Riverside, California 92521, USA, e-mail: [email protected]; 4Department of Plant and Environmental Science, New Mexico State University, Skeen Hall, Box 30003 MSC 3Q, Las Cruces, New Mexico 88003, USA, e-mail: [email protected] Mühlsteinová R., Hauer T., De Ley P. & Pietrasiak N. (2018): Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point. – Preslia 90: 151–169. Reliable taxonomy of any group of organisms cannot be performed without phylogenetic refer- ence points. In the historical “morphological era”, a designated type specimen was considered fully sufficient but nowadays this principle can prove to be problematic and challenging espe- cially when studying microscopic organisms. However, within the last decades there has been tre- mendous advancement in microscopy imaging and molecular biology offering additional data to systematic studies in ways that are revolutionizing cyanobacterial taxonomy. Unfortunately, most of the existing herbarium specimens or even iconotypes of old established taxa often cannot be subjects of modern analytic methods. Such is the case for the widely known cyanobacterial genus Oscillatoria which was introduced by Vaucher in 1803.
    [Show full text]
  • First Insights Into the Impacts of Benthic Cyanobacterial Mats on Fish
    www.nature.com/scientificreports OPEN First insights into the impacts of benthic cyanobacterial mats on fsh herbivory functions on a nearshore coral reef Amanda K. Ford 1,2*, Petra M. Visser 3, Maria J. van Herk3, Evelien Jongepier 4 & Victor Bonito5 Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they infuence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantifed the coverage of various BCM-types and estimated the biomass of key herbivorous fsh functional groups. Using remote video observations, we compared fsh herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fsh (opportunistically) consuming BCMs. Samples of diferent BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fsh biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were signifcantly reduced on BCM-dominated substratum, and no fsh were unambiguously observed consuming BCMs. Seven diferent BCM-types were identifed, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacifc reefs. Tough scarcely mentioned in the literature a decade ago, benthic cyanobacterial mats (BCMs) are receiving increasing attention from researchers and managers as being a nuisance on tropical coral reefs worldwide1–4.
    [Show full text]
  • Filamentous Cyanobacteria from Western Ghats of North Kerala, India
    Bangladesh J. Plant Taxon. 28(1): 83‒95, 2021 (June) https://doi.org/10.3329/bjpt.v28i1.54210 © 2021 Bangladesh Association of Plant Taxonomists FILAMENTOUS CYANOBACTERIA FROM WESTERN GHATS OF NORTH KERALA, INDIA 1 V. GEETHU AND MAMIYIL SHAMINA Cyanobacterial Diversity Division, Department of Botany, University of Calicut, Kerala, India Keywords: Cyanobacteria, Filamentous, Peruvannamuzhi, Western Ghats. Abstract Cyanobacteria are Gram negative, photosynthetic and nitrogen fixing microorganisms which contribute much to our present-day life as medicines, foods, biofuels and biofertilizers. Western Ghats are the hotspots of biodiversity with rich combination of microbial flora including cyanobacteria. Though cosmopolitan in distribution, their abundance in tropical forests are not fully exploited. To fill up this knowledge gap, the present research was carried out on the cyanobacterial flora of Peruvannamuzhi forest and Janaki forests of Western Ghats in Kozhikode District, North Kerala State, India. Extensive specimen collections were conducted during South-West monsoon (June to September) and North-East monsoon (October to December) in the year 2019. The highest diversity of cyanobacteria was found on rock surfaces. A total of 18 cyanobacterial taxa were identified. Among them filamentous heterocystous forms showed maximum diversity with 10 species followed by non- heterocystous forms with 8 species. The highest number of cyanobacteria were identified from Peruvannamuzhi forest with 15 taxa followed by Janaki forest with 3 taxa. The non- heterocystous cyanobacterial genus Oscillatoria Voucher ex Gomont showed maximum abundance with 4 species. In this study we reported Planktothrix planktonica (Elenkin) Agagnostidis & Komárek 1988, Oscillatoria euboeica Anagnostidis 2001 and Nostoc interbryum Sant’Anna et al. 2007 as three new records from India.
    [Show full text]
  • Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa
    minerals Article Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa Dahédrey Payandi-Rolland 1,2 , Adeline Roche 1, Emmanuelle Vennin 1 , Pieter T. Visscher 1,3, Philippe Amiotte-Suchet 1 , Camille Thomas 4 and Irina A. Bundeleva 1,* 1 Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France 2 Géoscience and Environment Toulouse, UMR 5563 CNRS, Université Paul Sabatier Toulouse III, 14 Avenue Edouard Belin, 31400 Toulouse, France 3 Departments of Marine Sciences and Geoscience, University of Connecticut, Storrs, CT 06340, USA 4 Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland * Correspondence: [email protected] Received: 27 May 2019; Accepted: 2 July 2019; Published: 3 July 2019 Abstract: Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA sequencing data showed that the enriched biofilm was composed predominantly of two types of filamentous cyanobacteria that belonged to the Oscillatoriaceae and Phormidiaceae families, respectively. Microscopic analysis also indicated the presence of some coccoid cyanobacteria resembling Gloeocapsa. Analysis of carbonate precipitates in experimental biofilms showed three main morphologies: micro-peloids with different shapes of mesocrystals associated with Oscillatoriaceae filaments and theirs EPS, lamellae of carbonate formed directly on Phormidiaceae filaments, and rhombic sparite crystals wrapped in EPS. All crystals were identified by FT-IR spectroscopy as calcite. Similar structures as those that formed in laboratory conditions were observed in the microbial-tufa deposits collected in the stream.
    [Show full text]
  • Effects of Nutrient Enrichment of the Cyanobacterium Lyngbya Sp. On
    Vol. 394: 101–110, 2009 MARINE ECOLOGY PROGRESS SERIES Published November 18 doi: 10.3354/meps08311 Mar Ecol Prog Ser Effects of nutrient enrichment of the cyanobacterium Lyngbya sp. on growth, secondary metabolite concentration and feeding by the specialist grazer Stylocheilus striatus Karen E. Arthur1, 4,*, Valerie J. Paul1, Hans W. Paerl2, Judith M. O’Neil3, Jennifer Joyner2, Theresa Meickle1 1Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, USA 2Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, North Carolina 28557, USA 3University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland 21613, USA 4Present address: Department of Geology and Geophysics, University of Hawaii, 1680 East-West Ave, Honolulu, Hawaii 96822, USA ABSTRACT: Harmful blooms of the benthic cyanobacteria Lyngbya spp. are increasing in coastal marine habitats. Nutrient enrichment has been implicated in bloom formation; however, the effects of nutrient enrichment on secondary metabolite concentrations and the resulting palatability of Lyngbya spp. are not known. Using nutrient bioassays, we examined the effects of nitrogen (N), phosphorus (P) and chelated iron (Fe) on growth and secondary metabolite concentration in Lyngbya sp. collected from reefs in Broward County, Florida. The consequences of these nutrient additions on feeding be- havior of a major specialist opisthobranch grazer, Stylocheilus striatus, were examined. Chelated Fe additions (+FeEDTA) significantly increased Lyngbya sp. growth, while additions of N, P and chelated Fe combined (+All) resulted in significantly lower concentrations of microcolin A than in the control. Overall, there was a negative correlation between growth and total concentrations of microcolins A and B.
    [Show full text]
  • Arthrospira (Spirulina) 2 5 Claudio Sili , Giuseppe Torzillo and Avigad Vonshak
    Arthrospira (Spirulina) 2 5 Claudio Sili , Giuseppe Torzillo and Avigad Vonshak Contents Summary Summary ........................................................................................ 677 25.1 Introduction .................................................................. 677 The successful commercial exploitation of Arthrospira because of its high nutritional value, chemical composition 25.2 Morphology................................................................... 678 and safety of the biomass has made it one of the most impor- 25.3 Taxonomy ...................................................................... 686 tant industrially cultivated microalgae. Knowledge of its 25.4 Occurrence and Distribution ...................................... 689 biology and physiology, which is essential for understand- ing the growth requirements of this alkaliphilic organism, 25.5 Physiology ..................................................................... 691 25.5.1 Response to Environmental Factors ............................... 692 has been used in developing suitable technologies for mass 25.5.1.1 Effect of Light on Growth .............................................. 692 cultivation. The relationships between environmental and 25.5.1.2 Light Stress – Photoinhibition ....................................... 692 cultural factors, which govern productivity in outdoor cul- 25.5.1.3 Effect of Temperature on Photosynthesis tures, are discussed in connection with growth yield and and Respiration .............................................................
    [Show full text]
  • Chapter 3. CYANOBACTERIAL TOXINS
    Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management Edited by Ingrid Chorus and Jamie Bartram © 1999 WHO ISBN 0-419-23930-8 Chapter 3. CYANOBACTERIAL TOXINS This chapter was prepared by Kaarina Sivonen and Gary Jones The cyanotoxins are a diverse group of natural toxins, both from the chemical and the toxicological points of view. In spite of their aquatic origin, most of the cyanotoxins that have been identified to date appear to be more hazardous to terrestrial mammals than to aquatic biota. Cyanobacteria produce a variety of unusual metabolites, the natural function of which is unclear, although some, perhaps only coincidentally, elicit effects upon other biota. Research has primarily focused on compounds that impact upon humans and livestock, either as toxins or as pharmaceutically useful substances. Further ranges of non-toxic products are also being found in cyanobacteria and the biochemical and pharmacological properties of these are totally unknown. An overview of the currently identified cyanotoxins is given in section 3.1 and their toxicological properties are discussed in Chapter 4. Studies on the occurrence, distribution and frequency of toxic cyanobacteria were conducted in a number of countries during the 1980s using mouse bioassay. Analytical methods suitable for quantitative toxin determination only became available in the late 1980s, but studies of specific cyanotoxins have been increasing since then. The results of both approaches indicate that neurotoxins are generally less common, except perhaps in some countries where they frequently cause lethal animal poisonings. In contrast, the cyclic peptide toxins (microcystins and nodularins) which primarily cause liver injury are more widespread and are very likely to occur if certain taxa of cyanobacteria are present.
    [Show full text]
  • Late Ediacaran Organic Microfossils from Finland
    Geological Magazine Late Ediacaran organic microfossils from www.cambridge.org/geo Finland Sebastian Willman and Ben J. Slater Original Article Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden Cite this article: Willman S and Slater BJ. Late Abstract Ediacaran organic microfossils from Finland. Geological Magazine https://doi.org/10.1017/ Here we present a detailed accounting of organic microfossils from late Ediacaran sediments S0016756821000753 of Finland, from the island of Hailuoto (northwest Finnish coast), and the Saarijärvi meteorite impact structure (~170 km northeast of Hailuoto, mainland Finland). Fossils were Received: 16 March 2021 recovered from fine-grained thermally immature mudstones and siltstones and are preserved Revised: 10 June 2021 Accepted: 24 June 2021 in exquisite detail. The majority of recovered forms are sourced from filamentous prokaryotic and protistan-grade organisms forming interwoven microbial mats. Flattened Nostoc-ball-like Keywords: masses of bundled Siphonophycus filaments are abundant, alongside Rugosoopsis and Ediacaran; Bilateria; microbial mats; acritarchs; Palaeolyngbya of probable cyanobacterial origin. Acritarchs include Chuaria, Leiosphaeridia, impact crater; organic-walled microfossils; Symplassosphaeridium and Synsphaeridium. Significantly, rare spine-shaped sclerites of Baltica bilaterian origin were recovered, providing new evidence for a nascent bilaterian fauna in Author for correspondence: the terminal Ediacaran. These findings offer a direct body-fossil insight into Ediacaran Sebastian Willman, mat-forming microbial communities, and demonstrate that alongside trace fossils, detection Email: [email protected]; of a bilaterian fauna prior to the Cambrian might also be sought among the emerging record Ben Slater, Email: [email protected] of small carbonaceous fossils (SCFs).
    [Show full text]
  • Taxonomy and Biodiversity of the Genus Oscillatoria Vauch. Ex Gom. (Cyanoprokaryota: Oscillatoriales) with Ecological Notes From
    Brazilian Journal of Biological Sciences, 2017, v. 4, No. 7, p. 89-101. ISSN 2358-2731 https://dx.doi.org/10.21472/bjbs.0407010 Taxonomy and biodiversity of the genus Oscillatoria Vauch. ex Gom. (Cyanoprokaryota: Oscillatoriales) with ecological notes from Hooghly in West Bengal, India Nilu Halder Department of Botany, Raja Peary Mohan College, Uttarpara-712258, Hooghly, West Bengal, India. Email: [email protected]. Abstract. Research articles in the reference list regarding investigation or exploration of Oscillatoriales exhibited that Received taxonomic study of freshwater blue-green algae has been a subject December 03, 2016 of interest of research workers and professional scientists for more than one century in India. Oscillatoria Vauch. ex Gom. Accepted (Cyanoprokaryota: Oscillatoriales) is a dominant and ubiquitous June 24, 2017 blue-green alga in Hooghly District of West Bengal, India. Its thallus is consists of unsheathed trichome and contains more than Released 20 cells in a trichome. The recent study was dealt with the June 30, 2017 taxonomic enumeration of five species of the genus (O. princeps, Open Acess O. curviceps, O. sancta, O. limosa, and O. jenensis) which were Full Text Article collected from different freshwater aquatic ecosystems of this district and they were described with ecological data, geographical distributions and colored microphotographs. Here, the relationships between the water chemistry and their occurrences had been also discussed. The analysis of important physico-chemical properties of water revealed that species of Oscillatoria prefer to grow in those water bodies prevailing alkaline pH, sufficient to meet the essential nutrients and contain hard and polluted water. Taxonomy; Oscillatoria; West Bengal; India.
    [Show full text]
  • Uzbekistan on the Conservation of Biological Diversity
    THE SIXTH NATIONAL REPORT OF THE REPUBLIC OF UZBEKISTAN ON THE CONSERVATION OF BIOLOGICAL DIVERSITY THE UNITED NATIONS DEVELOPMENT PROGRAMME IN UZBEKISTAN GLOBAL ENVIRONMENT FACILITY STATE COMMITTEE OF THE REPUBLIC OF UZBEKISTAN ON ECOLOGY AND ENVIRONMENTAL PROTECTION THE SIXTH NATIONAL REPORT OF THE REPUBLIC OF UZBEKISTAN ON THE CONSERVATION OF BIOLOGICAL DIVERSITY Tashkent 2018 2 THE SIXTH NATIONAL REPORT OF THE REPUBLIC OF UZBEKISTAN ON THE CONSERVATION OF BIOLOGICAL DIVERSITY Sixth National Report of the Republic of Uzbekistan on the conservation of biological diversity / edited by B.T. Kuchkarov / Tashkent, 2018. - 207p. The report was prepared under the overall guidance of B.T. Kuchkarov, the Chairperson of the State Committee of the Republic of Uzbekistan on Ecology and Environmental Protection (Goskomekologiya RUz) and National Coordinator of the Project “Technical Support to Eligible Parties to Produce the Sixth National Report to the Convention on Biological Diversity”. Authors: Kh. Sherimbetov, Candidate of Technical Sciences, Head of the Department on Protected Natural Areas, the State Committee for Ecology and Environmental Protection of the Republic of Uzbekistan, Team Leader M. Aripdjanov, a.i., Head of the Bioinspection, the State Committee for Ecology and Environmental Protection of the Republic of Uzbekistan R. Gabitova, Gender Specialist Y. Mitropolskaya, Candidate of Biological Sciences, Senior Scientist, Institute of Zoology, Academy of Sciences of Uzbekistan U. Sobirov, Head of the Department for Biodiversity and Protected Natural Areas, the State Committee for Ecology and Environmental Protection of the Republic of Uzbekistan V. Talskikh, Candidate of Biological Sciences, Head of the Information Department of the Environmental Pollution Monitoring Service, Uzhydromet at Ministry of Emergency Situations of the Republic of Uzbekistan O.
    [Show full text]