Annals of Botany 123: 451–460, 2019 doi: 10.1093/aob/mcy170, available online at www.academic.oup.com/aob Cretaceous asterid evolution: fruits of Eydeia jerseyensis sp. nov. (Cornales) from the upper Turonian of eastern North America Brian A. Atkinson1,2,*, Camila Martínez3 and William L. Crepet3 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66044, USA, 2Biodiversity Institute and Museum of Natural History, University of Kansas, Lawrence, KS 66044, USA and 3L. H. Bailey Hortorium, Plant Biology Downloaded from https://academic.oup.com/aob/article/123/3/451/5096126 by guest on 28 September 2021 Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA *For correspondence. E-mail
[email protected] Received: 21 March 2018 Returned for revision: 5 May 2018 Editorial decision: 13 August 2018 Accepted: 10 September 2018 Published electronically 13 September 2018 • Background and aims The asterids (>80 000 extant species) appear in the fossil record with considerable diversity near the Turonian–Coniacian boundary (~90 Ma; Late Cretaceous) and are strongly represented in the earliest diverging lineage, Cornales. These early asterid representatives have so far been reported from western North America and eastern Asia. In this study, we characterize a new cornalean taxon based on charcoalified fruits from the upper Turonian of eastern North America, a separate landmass from western North America at the time, and identify early palaeobiogeographical patterns of Cornales during the Cretaceous. • Methods Fossils were studied and imaged using scanning electron microscopy and micro-computed tomogra- phy (micro-CT) scanning. To assess the systematic affinities of the fossils, phylogenetic analyses were conducted using maximum parsimony.