<Abstract Centered> an ABSTRACT of the THESIS OF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pollen of Genus Alangium in Cenozoic Deposits of Georgia
saqarTvelos mecnierebaTa erovnuli akademiis moambe, t. 8, #3, 2014 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 8, no. 3, 2014 Palaeobiology The Pollen of Genus Alangium in Cenozoic Deposits of Georgia Irina Shatilova*, Irma Kokolashvili** * Georgian National Museum, Institute of Palaeobiology, Tbilisi **Georgian Technical University, Tbilisi (Presented by Academy Member David Lordkipanidze) ABSTRACT. In geological records the genus Alangium is known from the Paleogene. Morphologically different pollen grains were determined in the Eocene deposits of both hemispheres: the pollen of Alangium sp. A in North America, Alangiopollis eocaenicus Krutzsch in Europe and Alangium sibiricum Lubomirova in the Western Siberia. The species A. barhoornianum Traverse was described from the Upper Oligocene Brandon lignite of Vermond (North America). The same pollen grains were revealed in Europe. The European pollen remains were similar to Traverse’s Alangium barhoornianum and only the generic name was changed. On the territory of Europe the species Alangiopollis barhoornianum (Traverse) Krutzch is known mainly from the Paleogene till the Middle Miocene. Approximately in the same interval of time the species A. simplex Nagy and A. rarus Cernjavska were determined. On the territory of Georgia the genus Alangium is also known from Paleogene. The species Alangiopollis eocaenicus was described from the Middle Oligocene deposits of Southern Georgia. In Sarmatian the genus was represented by two species A. eocaenicus and A. barhoornianum. After Sarmatian the history of Alangium was connected only with the area adjoining the Black Sea, where the accumulation of marine deposits continued during the whole Pliocene and Pleistocene. In Meotian the pollen grains of two species were determined - the extinct taxon A. -
Anthelmintic Activity of Alangium Salviifolium Bark
Available online a t www.scholarsresearchlibrary.com Scholars Research Library J. Nat. Prod. Plant Resour ., 2012, 2 (6):717-720 (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231 – 3184 CODEN (USA): JNPPB7 Anthelmintic activity of Alangium salviifolium bark Ravi Shankar Pandey SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G _____________________________________________________________________________________________ ABSTRACT Alangium salviifolium (AS) is a novel medicinal plant used for the treatment of various diseases including helminthiasis by the traditional healers of Chhattisgarh. So an attempt has been taken to explore it scientifically. Preliminary phytochemical investigation reveals that there is presence of flavonoids, Saponins, phenols, bitter principles and steroids. Three different concentrations (50, 100 and 150 mg/ml) of crude extract of hexane, ethyl acetate, chloroform and methanol were tested against earthworms (Pheretima posthuma), which involved the evaluation of paralysis and death period of the worm. Methanol and chloroform extracts exhibited significant anthelmintic activity at highest concentration of 150 mg/mL. Piperzine citrate was selected as standard compound and DMF as control. The anthelmintic activity of Methanol and chloroform of bark of AS has therefore been evaluated for the first time. Key words: Alangium salviifolium; helminthiasis; Pheretima posthuma; Piperzine citrate and Paralysis _____________________________________________________________________________________________ INTRODUCTION Helminthiasis is a macroparasitic disease of humans and animals caused due to parasitic worms such as pinworm, roundworm, or tapeworm. These worms some times live in the gastrointestinal tract, may also burrow into the liver, lymphatic system, or other organs [1]. The clinical picture of consists of skin infection, skin nodules, and ocular lesions. The skin lesions include oedema, papules, scab-like eruptions and altered pigmentation. -
GFS Fungal Remains from Late Neogene Deposits at the Gray
GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996). -
NATIVE PLANT FIELD GUIDE Revised March 2012
NATIVE PLANT FIELD GUIDE Revised March 2012 Hansen's Northwest Native Plant Database www.nwplants.com Foreword Once upon a time, there was a very kind older gentleman who loved native plants. He lived in the Pacific northwest, so plants from this area were his focus. As a young lad, his grandfather showed him flowers and bushes and trees, the sweet taste of huckleberries and strawberries, the smell of Giant Sequoias, Incense Cedars, Junipers, pines and fir trees. He saw hummingbirds poking Honeysuckles and Columbines. He wandered the woods and discovered trillium. When he grew up, he still loved native plants--they were his passion. He built a garden of natives and then built a nursery so he could grow lots of plants and teach gardeners about them. He knew that alien plants and hybrids did not usually live peacefully with natives. In fact, most of them are fierce enemies, not well behaved, indeed, they crowd out and overtake natives. He wanted to share his information so he built a website. It had a front page, a page of plants on sale, and a page on how to plant natives. But he wanted more, lots more. So he asked for help. I volunteered and he began describing what he wanted his website to do, what it should look like, what it should say. He shared with me his dream of making his website so full of information, so inspiring, so educational that it would be the most important source of native plant lore on the internet, serving the entire world. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
New Late Cretaceous Gastropods from the Pacific Slope of North America
Watural History Museum y p- CfljlWoh'cN^ Of Los Angeles County iRvartebrate Paleontology J. Paleont., 75(1), 2001, pp. 46-65 | Copyright © 2001, The Paleontological Society 0022-3360/01/0075-46$03.00 NEW LATE CRETACEOUS GASTROPODS FROM THE PACIFIC SLOPE OF NORTH AMERICA RICHARD L. SQUIRES AND LOUELLA R. SAUL Department of Geological Sciences, California State University, Northridge 91330-8266, <[email protected]>, and Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, < lousaul @ earthlink.net > ABSTRACT—Two new genera and ten new species of shallow-marine, warm-water gastropods are reported from several Upper Creta- ceous formations found between British Columbia and southern California. The buccinid Zaglenum new genus is represented by two new species and the turbinellid Fimbrivasum new genus is represented by three new species. The nododelphinulid Trochacanthus pacificus new species is the first record of this genus in the Western Hemisphere, and the procerthiid Nudivagusl califus new species could be the first record of this genus on the Pacific slope of North America. The xenophorid Xenophora (Endoptygma) hermax new species is only the second known Cretaceous species of this genus on the Pacific slope of North America, and this species establishes that Endoptygma Gabb, 1877, is a valid taxon. The neritid Otostoma sharonae new species is only the fourth known Cretaceous species of this genus on the Pacific slope of North America. The ringiculid Ringicula? (Ringiculopsis?) hesperiae new species is the first Campanian record of this genus on the Pacific slope of North America and the first recognition of this subgenus in this area. -
Alangium-Presentation [Lecture Seule]
A Targeted Enrichment Strategy for Sequencing of Medicinal Species in the Indonesian Flora Berenice Villegas-Ramirez, Erasmus Mundus Master Programme in Evolutionary Biology (MEME) Supervisors: Dr. Sarah Mathews, Harvard University Dr. Hugo de Boer, Uppsala University Introduction • Up to 70,000 plant species are used worldwide in traditional medicine. • At least 20,000 plant taxa have recorded medicinal uses. • Main commercial producers are in Asia: China, India, Indonesia, and Nepal. • Indonesia has c. 7000 plant species of documented medicinal use. • But…… Transmigration and Farming Herbarium Specimens • Plastid genes rbcL and matK have been be adopted as the official DNA barcodes for all land plants. • rbcl ~ 1428 bp • matK ~ 1500 bp • Herbarium specimens often require more attempts at amplification with more primer combinations. • Higher possibility of obtaining incorrect sequences through increased chances of samples becoming mixed up or contaminated. • Lower performance using herbarium material due to lower amplification success. • Caused by severe degradation of DNA into low molecular weight fragments. • But fragmented DNA is not a curse! Next-Generation Sequencing • Fragmented DNA is less of a problem • Only a few milligrams of material are necessary Targeted Enrichment • Defined regions in a genome are selectively captured from a DNA sample prior to sequencing. • The genomic complexity in a sample is reduced. • More time- and cost-effective. Hybrid Capture Targeted Enrichment • Library DNA is hybridized to a probe. • Pre-prepared DNA or RNA fragments complementary to the targeted regions of interest. • Non-specific hybrids are removed by washing. • Targeted DNA is eluted. Easy to use, utilizes a small amount of input DNA (<1-3 ug), and number of loci (target size) is large (1-50 Mb). -
Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America
THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(2):83–104 (June 30, 2006) Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA AND LOUELLA R. SAUL Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. The Cretaceous record of the nuculid bivalve Acila (Truncacila) Grant & Gale, 1931, is established for the first time in the region extending from the Queen Charlotte Islands, British Columbia, southward to Baja California, Mexico. Its record is represented by three previously named species, three new species, and one possible new species. The previously named species are reviewed and refined. The cumulative geologic range of all these species is Early Cretaceous (late Aptian) to Late Cretaceous (early late Maastrichtian), with the highest diversity (four species) occurring in the latest Campanian to early Maastrichtian. Acila (T.) allisoni, sp. nov., known only from upper Aptian strata of northern Baja California, Mexico, is one of the earliest confirmed records of this subgenus. ‘‘Aptian’’ reports of Trun- cacila in Tunisia, Morocco, and possibly eastern Venzeula need confirmation. Specimens of the study area Acila are most abundant in sandy, shallow-marine deposits that accumulated under warm- water conditions. Possible deeper water occurrences need critical evaluation. INTRODUCTION and Indo-Pacific regions and is a shallow-burrowing de- posit feeder. Like other nuculids, it lacks siphons but has This is the first detailed study of the Cretaceous record an anterior-to-posterior water current (Coan et al., 2000). -
Open As a Single Document
Cercis: The Redbuds by KENNETH R. ROBERTSON One of the few woody plants native to eastern North America that is widely planted as an ornamental is the eastern redbud, Cercis canadensis. This plant belongs to a genus of about eight species that is of interest to plant geographers because of its occurrence in four widely separated areas - the eastern United States southwestward to Mexico; western North America; south- ern and eastern Europe and western Asia; and eastern Asia. Cercis is a very distinctive genus in the Caesalpinia subfamily of the legume family (Leguminosae subfamily Caesalpinioi- - deae). Because the apparently simple heart-shaped leaves are actually derived from the fusion of two leaflets of an evenly pinnately compound leaf, Cercis is thought to be related to -~auhinic~, which includes the so-called orchid-trees c$~~ cultivated in tropical regions. The leaves of Bauhinia are usu- ally two-lobed with an apical notch and are made up of clearly ~ two partly fused leaflets. The eastern redbud is more important in the garden than most other spring flowering trees because the flower buds, as well as the open flowers, are colorful, and the total ornamental season continues for two to three weeks. In winter a small bud is found just above each of the leaf scars that occur along the twigs of the previous year’s growth; there are also clusters of winter buds on older branches and on the tree trunks (Figure 3). In early spring these winter buds enlarge (with the excep- tion of those at the tips of the branches) and soon open to re- veal clusters of flower buds. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Steciana Doi:10.12657/Steciana.020.004 ISSN 1689-653X
2016, Vol. 20(1): 21–32 Steciana doi:10.12657/steciana.020.004 www.up.poznan.pl/steciana ISSN 1689-653X ANATOMICAL STUDY OF CORNUS MAS L. AND CORNUS OFFICINALIS SEIB. ET ZUCC. (CORNACEAE) ENDOCARPS DURING THEIR DEVELOPMENT MARIA MOROZOWSKA, ILONA WYSAKOWSKA M. Morozowska, I. Wysakowska, Department of Botany, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland, e-mail: [email protected], [email protected] (Received: June 17, 2015. Accepted: October 20, 2015) ABSTRACT. Results of anatomical studies on the developing endocarps of Cornus mas and C. officinalis are pre- sented. Formation of an endocarp and anatomical changes in its structure from the flowering stage to fully developed fruits were observed with the use of LM and SEM. In the process of anatomical development of endocarps the formation of two layers, i.e. the inner and the outer endocarp, was observed. Changes in their anatomical structure consisted in a gradual thickening of cell walls and their lignification. The ligni- fication of endocarp cell walls begins in the inner endocarp, it proceeds in the outside parts of the outer endocarp, with an exception of several layers of cells forming the transition zone (circular strand) present on its margin, and finally, almost at the same time, in the rest of the outer endocarp. Cell walls of the cells distinguishing the germinating valves undergo thickening delayed by several days in comparison to other endocarp cells. Thickening of their cell walls starts in cells situated close to the inner endocarp and proceeds to its outer parts, and their lignification is not very intensive. -
From the Late Eocene of Hordle, Southern England
Acta Palaeobotanica 59(1): 51–67, 2019 e-ISSN 2082-0259 DOI: 10.2478/acpa-2019-0006 ISSN 0001-6594 Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England STEVEN R. MANCHESTER1* and MARGARET E. COLLINSON2 1 Florida Museum of Natural History, Dickinson Hall, P.O. Box 117800, Gainesville, Florida, U.S.A.; e-mail: [email protected] 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom Received 26 October 2018; accepted for publication 29 April 2019 ABSTRACT. The Mastixiaceae (Cornales) were more widespread and diverse in the Cenozoic than they are today. The fossil record includes fruits of both extant genera, Mastixia and Diplopanax, as well as several extinct genera. Two of the fossil genera, Eomastixia and Mastixicarpum, are prominent in the palaeobotanical literature, but concepts of their delimitation have varied with different authors. These genera, both based on species described 93 years ago by Marjorie Chandler from the late Eocene (Priabonian) Totland Bay Member of the Headon Hill Formation at Hordle, England, are nomenclaturally fundamental, because they were the first of a series of fos- sil mastixioid genera published from the European Cenozoic. In order to better understand the type species of Eomastixia and Mastixicarpum, we studied type specimens and topotypic material using x-ray tomography and scanning electron microscopy to supplement traditional methods of analysis, to improve our understanding of the morphology and anatomy of these fossils. Following comparisons with other fossil and modern taxa, we retain Mas- tixicarpum crassum Chandler rather than transferring it to the similar extant genus Diplopanax, and we retain Eomastixia bilocularis Chandler [=Eomastixia rugosa (Zenker) Chandler] and corroborate earlier conclusions that this species represents an extinct genus that is more closely related to Mastixia than to Diplopanax.