Pneumaticity and Soft-Tissue Reconstructions in the Neck Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CPY Document
v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead. -
A Reassessment of the Phylogenetic Position of Cretaceous Sauropod Dinosaurs from Queensland, Australia
Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 139-144.Buenos Aires, 30-6-2001 A ReasSessmenT of the phylogenetic position of CretaceoUS SaUROPOd dinosaURS from Queensland, Australia Ralph E. MOLNAR1 Abstract. The Cretaceous sauropod material from Queensland, Australia, has been regarded as pertaining to a persistently primitive sauropod lineage (e.g., Coombs and Molnar). The specimens derive from the Toolebuc and Allaru (Albian marine) and Winton (Cenomanian continental) Formations. Recent phyloge- netic analyses carried out by workers in Argentina, the USA and England permit a reassessment of this fragmentary material. As far as can be ascertained from the material, there is no indication from the char- acter states that more than a single taxon is represented. Character states diagnostic of the Titanosauriforrnes, the Titanosauria, the Somphospondyli and the Titanosauridae are present. Thus the Queensland material does not pertain to cetiosaurids but belongs to titanosaurs, extending their range in- to Australia Key words. Sauropods. Austrosaurus. Titanosaurs. Cretaceous. Paleozoogeography. IntroductioN (1998),has made it possible to reassess the phyloge- netic affinities of the Australian Cretaceous sauropod By the 1950's titanosaurs were widely recognized material and address the anomalous absence of ti- both as the latest sauropod group to diversify and as tanosaurs. This paper looks specifically at pre-eminently the sauropods of Gondwanaland. -
The Princeton Field Guide to Dinosaurs, Second Edition
MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M. -
At Carowinds
at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal -
Dinosaurs Largest Ornithopod
Leaellynasaura amicagraphica (1989) age: Early Cretaceous REGION: VIC SIZE: 1.5m A small ornithopod, this plant-eater lived in an Australia that was further south and partly within the Antarctic Circle. A well-preserved skull reveals it had a large brain and eyes, which helped it keep watch for predators as s it foraged for plants in the dark of the Antarctic winter. Muttaburrasaurus Dinosaur New research by Dr Matt Herne shows Leaellynasaura (‘lee-allin-ah-sore-ah’) had an extremely long tail. langdoni (1981) of Drs Tom Rich and Patricia Vickers-Rich named Australia the species after their daughter, Leaellyn. AGE: Early Cretaceous REGION: QLD/NSW SIZE: 8–9m Muttaburrasaurus (‘muta-burra-sore-rus’) is our A guide to the dinosaurs largest ornithopod. With one partial skeleton and a second skull from QLD and several teeth from Down Under, which ranged NSW, this powerful herbivore could rear-up on Austrosaurus its back legs to reach high foliage and intimidate predators, though it sometimes moved on four (1933) from ferocious carnivores to mckillopi legs too. It had an unusual bulge on its snout, which may have contained an inflatable air sac. herbivorous behemoths. age: Early Cretaceous REGION: QLD SIZE: 15–20m Discovered in north-central Queensland 80 ILLUSTRATIONS BY LIDA XING years ago, Austrosaurus (‘aus-tro-sore-us’) was our first known Cretaceous sauropod. This long-necked species was able to reach high foliage. Austrosaurus means ‘southern lizard’. Timimus hermani (1994) age: Early Cretaceous REGION: VIC SIZE: 3-5m The femur of Timimus (‘tim-my-mus’) is one of many specimens found at Dinosaur Cove by Drs Tom Rich and Patricia Vickers-Rich. -
Neural Spine Bifurcation in Sauropods Palarch’S Journal of Vertebrate Palaeontology, 10(1) (2013)
Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids. -
Poropat Et Al 2017 Reappraisal Of
Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R. -
Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur. -
Dinosaur Species List E to M
Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon -
104Ornithodiraphyl
Millions of Years Ago 252.3 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Euparkeria Crurotarsi ? Scleromochlus ? Archosauria Pterosauria Lagerpetidae Ornithodira Marasuchus Genasauria Dinosauromorpha Silesauridae Neornithsichia Thyreophora Ornithischia Eocursor (esp. Dinosauria) et al. (2011), Yates (2007) Yates et al. (2011), Nesbitt etal.(2009), Sues (2007), Martinezet al.(2011), Irmis etal. Ezcurra (2006), EzcurraandBrusatte (2011), Phylogeny after Brusatteetal.(2010), Butleretal.(2007), Heterodontosauridae Pisanosaurus Dinosauria Ornithodira Sauropodomorpha Herrerasauria Saurischia Eodromeus Theropoda Daemonosaurus Tawa Neotheropoda Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late (2009), Norman et al. (2004), Thompson etal. (2011) (2009), Norman etal. (2004), Phylogeny afterButler etal. (2007a,b), Carpenter (2001),Galton &Upchurch (2004), Maidment etal.(2008), Mateus etal. Cerapoda Ornithopoda Eocursor Marginocephalia Neornithischia Othnielosaurus Genasauria (esp. Thyreophora) Genasauria (esp. Hexinlusaurus Stormbergia Genasauria Lesothosaurus Scutellosaurus Thyreophora Scelidosaurus Stegosauridae Stegosaurinae Dacentrurinae Stegosauria Kentrosaurus Tuojiangosaurus Huayangosauridae Gigantspinosaurus Eurypoda Tianchiasaurus Ankylosauria Nodosauridae Ankylosauridae Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous -
Giants from the Past | Presented by the Field Museum Learning Center 2 Pre-Lesson Preparation
Giants from the Past Middle School NGSS: MS-LS4-1, MS-LS4-4 Lesson Description Learning Objectives This investigation focuses on the fossils of a particular • Students will demonstrate an understanding that group of dinosaurs, the long-necked, herbivores known as particular traits provide advantages for survival sauropodomorphs. Students will gain an understanding by using models to test and gather data about the of why certain body features provide advantages to traits’ functions. Background survival through the use of models. Students will analyze • Students will demonstrate an understanding of and interpret data from fossils to synthesize a narrative ancestral traits by investigating how traits appear for the evolution of adaptations that came to define a and change (or evolve) in the fossil record well-known group of dinosaurs. over time. • Students will demonstrate an understanding of how traits function to provide advantages Driving Phenomenon in a particular environment by inferring daily Several traits, inherited and adapted over millions of years, activities that the dinosaur would have performed provided advantages for a group of dinosaurs to evolve for survival. into the largest animals that ever walked the Earth. Giant dinosaurs called sauropods evolved over a period of 160 Time Requirements million years. • Four 40-45 minute sessions As paleontologists continue to uncover new specimens, Prerequisite Knowledge they see connections across time and geography that lead to a better understanding of how adaptations interact • Sedimentary rocks form in layers, the newer rocks with their environment to provide unique advantages are laid down on top of the older rocks. depending on when and where animals lived. -
Osteological Revision of the Holotype of the Middle
Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str.