Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt. Col. Thomas James (c. 1768–1829) Ichthyosaurus 14, 115 ichthyosaurs 14–15, 23–24 plesiosaurs 17, 18, 25, 115 plesiosaurs 17, 25 pterodactyl 14, 115, 291 support for Mary Anning 23–24, 113, 115 Anning, Mary (or Molly) senior (1764–1842) 14, 25, 113 birds Anning, Richard (c. 1766–1810) 14, 113 digit identification 265–274 Antarctosaurus septentrionalis 164, 165 see also reptile-bird transition Apatosaurus 327, 365, 366, 371, 376, 377 Blanford, William Thomas (1832–1905), Indian see also Brontosaurus dinosaur discoveries 164, 165 Apatosaurus excelsus 85 Blikanasaurus cromptoni 91 Arambourgiania 289, 290, 318, 319 Born, Ignaz von (1742–1791) 279 Archaeopteryx 237–248 Borogovia, work of Osmo´lksa 134 classification post-1982 246–247 Borup, Yvette see Andrews, Yvette early debate 239–242, 253 Bowerbank, James Scott (1797–1877) 288 feather 237 Palaeornis 297 phylogeny 246–247 Pterodactylus giganteus 298–299, 302 research treatment by Owen 299, 302, 304–305 (1876–1926) 242–244 Brachiosaurus 371, 373–374, 375, 376, 377 (1926–1954) 244–245 Brachytrachelopan 380 post-1970 245–246 Bramwell, Cherrie Diane (1944–?) 130, 147 work of Huxley 241–242, 251, 256–257 British Museum (Natural History) Archaeopteryx bavarica 239 Leeds First Collection 50–51, 54, 55, 58, 62 Archaeopteryx lithographica 81, 237–239, 253 Leeds Second Collection 64, 65, 70–72 digit identity 268–269, 271 Woodward family illustrators 135–138 problems 94, 102 work of Alan Charig 90 specimens 237–239 Brodrick, Harold, ichnology, Cleveland Basin Archaeopteryx siemensii 238, 239 196–197, 198 archosaurs, work of Charig 92, 94, 96 Brontosaurus 366, 368, 369, 370, 370–372 Argentinosaurus 380 see also Apatosaurus Argyrosaurus 365, 368, 379 Brown, Barnum (1873–1963) 122–123, 124 Aristotelianism 6, 24 Indian expedition 164, 167 artwork 325–333, 336–338, 370–371, 375 Brown, Lilian (1887–1971) 123, 124 Triassic environment 221–226 Brown, Marion Raymond (1877–1910) 122–123 women illustrators 119, 120, 122, 125, 134–140 Buckland, Mary Morland (1797–1857) 119, see also comic strip 135, 146 388 INDEX Buckland, William (1784–1856) 288 Cheshire, ichnology 199 Chirotherium 209–210, 211 Chirotherium 210–227 Maastricht fossil 12 Chirotherium 209–227 Megalosaurus 20 artistic depiction 221–225, 226 Pterodactylus macronyx 14, 291 environment 219–227 Stonesfield ‘birds’ 291, 295 search for originator 215–219 Buckley, Arabella Burton (1840–1929), popular books Chirotherium barthi 209, 210, 212, 215 140–141, 146 Chirotherium kaupii 213 Bullock, William (c. 1773–1849), London Museum of Chirotherium sickleri 212 Natural History 14, 34 Chirotherium stortonense 210–212, 211, 213–215, 221 Burian, Zdenke (1905–1981), Triassic environment Choffat, Paul (1849–1919) 178 22–223, 224, 331 Chondrosteosaurus gigas 233, 234 Burniston footprint bed 197, 198 Chota Simla, dinosaur discoveries 164, 169, 170, 171 Cimoliornis diomedius 303–304, 305 cabinets of curiosities 6 cinema, dinosaur films 335, 338–339, 340 Calamites 222, 223 cladistics, work of Charig 94, 96 Callovosaurus leedsi 63–64 Clark, Thomas Jr (1792–1864), plesiosaur 16, 17 Camarasaurus 365, 366, 367, 374, 377 classification, palaeontology 22–23 Cambridge Greensand, pterosaurs 305–306, 307 Cleveland Anticline 189, 190 Camper, Adriaan Gilles (1759–1820) 12 Cleveland Basin, dinosaurs 189–204, 191 Camper, Petrus (1722–1789) 12, 24 ichnology 196–201 Camptosaurus hoggi 196 Clift, Caroline Amelia see Owen, Caroline Amelia Capellini, Giovanni (1833–1922) 79–87, 80 Clift, William (1775–1849) 21, 23, 121, 297 anthropology 82, 87 Cloughton Formation, lack of fossils 194–195 International Congress on Geology 85, 86 Coelophysis Museum of Geology and Palaeontology 85–86 digits 271, 272, 273 Natural History Museum, Bologna 82, 84–85 work of Karen Alf 140 North America 81–82 Coeluroides largus 164 palaeobiogeography 80, 82, 83,87 coelurosaurs, work of Mignon Talbot 125 palaeontological research 86–87 Colbert, Edwin (1905–2001) 123, 124, 125 University of Bologna 81, 82, 83 dinosaur masses 375, 376 Cardiodon 361, 362, 365 Colbert, Margaret (1911–2007) 123, 124, 125 Cetiosauriscus longus 193 Collini, Cosimo Alessandro (1727–1806) 288 Cetiosauriscus stewarti 55, 69–72, 94, 96 Eichsta¨tt Ptero-Dactyle 13 Cetiosaurus 193, 196, 361–362, 365 pterosaurs 287, 291 Cetiosaurus brachyurus 193 Coloborhynchus 306, 307 Cetiosaurus brevis 193, 362, 363 comic strip, dinosaurs 339–359 Cetiosaurus epioolithicus 193 Compsognathus longipes 85, 241, 242, 255–258, 256, 260 Cetiosaurus hypoolithicus 193 Compsosuchus solus 164 Cetiosaurus leedsi 55, 56, 64–65, 69 Congrieve, Miss, fossil hunter 116–117, 146, 147 Cetiosaurus longus 193 Conybeare, William Daniel (1787–1857) 24–25 Cetiosaurus medius 193 ichthyosaurs 15, 19 Cetiosaurus oxoniensis 363–365 Maastricht fossil 12 Chain of Being 14–15, 16, 24, 25 plesiosaurs 16–17, 18, 19 Chapman, Captain William (1713–1793) 8–9 Stonesfield ‘birds’ 291 Characichnos tridactylus 201, 202 Cope, Edward Drinker (1840–1897) Charig, Alan Jack (1927–1997) 89–107, 90 pterosaurs 314 A New Look at the Dinosaurs (1979) 101 rivalry with Marsh 365–366 amphisbaenians 95 coprolites Baryonyx walkeri 94, 95, 102, 103 India 163, 165, 166, 171 Before the Ark (1975) 98, 101 Karen Chin 144, 203 British Museum (Natural History) 90–91, 96–98 Saltwick Formation 201, 203 Brooke Bond tea cards 91, 98, 100 Coralline Oolite Formation Cetiosauriscus stewarti 69, 94, 96 dinosaur teeth 196, 197 cladistics 94, 96 Omosaurus phillipsi 197 Dimorphodon 93, 103 Cornwell bone 7 dinosaurs 91–94 Cretaceous–Tertiary boundary 95, 144 K–T boundary 95 crocodilians phylogeny 93, 94, 96 ankles, work of Charig 92 popularization 98, 100, 101–102 early collections 11 Fletton Plesiosaur 92 Suchosaurus, work of Owen 178–181 heterodontosaurids 91, 93, 103 Whitby 8–9 Iguanodon 96 work of Mantell 182–184 proterosuchians 92, 93 Crocodilus cultridens 178–180 relationship with Barney Newman 102–103 Cryptoclidus eurymerus 92 research expeditions 96, 97, 98, 99, 100 Cunningham, John (1799–1873) 210–212, 221 on sauropodomorphs and sauropods 91–92 Cuvier, Baron Georges (1769–1832) 184, 288 Scelidosaurus 95–96, 103 classification 24 theropods 94, 95 Eichsta¨tt Ptero-Dactyle 13 INDEX 389 Tilgate Forest spinosaur 184–185 palaeoneurologist 126, 127–129 Maastricht fossils 12 Senckenberg Museum Frankfurt 127–128 Pterodactylus antiquus 292 Edinger, Ludwig (1855–1918) 127 Edwards, Vernon, dinosaur models 337, 338 Dacentrurus phillipsii 196 egg, saurian, Leeds Second Collection 66, 69 Dames, Wilhelm (1843–1898) 242–243 Eichsta¨tt Ptero-Dactyle 13–14 Darling, Lois (1917–1989), illustrator 139 Elston plesiosaur 8, 16 Darwin, Charles Robert (1809–1882) Eoraptor lunensis, digits 270–271, 273 reptile-bird transition 241, 252, 253 Equisetites keuperina 219–220, 221, 225, 226 Theory of Evolution 240, 251–252 Equisetum giganteum 227 Das-Gupta, H. C., dinosaur discoveries 164, 168 Erketu 380 De la Beche, Henry Thomas (1796–1855) Euparkeria 218, 245 ichthyosaurs 14, 15 Europasaurus 380 plesiosaurs 16–17 evolution Deinocheirus mirificus 134, 344 work of Capellini 82, 87 Deinonychus 245, 246, 343, 375 work of Darwin 240, 251–252 in graphic art 350, 352, 353 work of Huxley 254–255 Deltapodus brodricki 200–201, 202 digits, theropod 265–274 Faujas de Saint-Fond, Barthe´lemy (1741–1819), frame-shift hypothesis 271–273 Great Fossil Animal of Maastricht 12 molecular genetics 269–271 Felsinotherium forestii 84 research Figuier, Guillame Louis (1819–1894) (1825–1934) 265–267 Archaeopteryx 254 (1945–1979) 267–268 Triassic environment 222, 223 (1980–1998) 269–271 ‘Flesh’ 343–359 diluvialism, origin of fossils 6, 8, 9, 210 Fletton plesiosaur, work of Charig 92 Dimorphodon, work of Charig 93, 103 flight, origin of 244 Dimorphodon macronyx 14, 93, 115, 294 fossils, early collections 6–11, 22–25 Dinosaur Park, Alberta Foureau, Fernand (1850–1914) 176–177, 176
Recommended publications
  • Dino Hunt Checklist Card Name Type Rarity Acanthopholis
    Dino Hunt Checklist Card Name Type Rarity Acanthopholis Dinosaur Common Acrocanthosaurus Dinosaur Rare Albertosaurus Dinosaur Rare Albertosaurus Dinosaur Ultra Rare Alioramus Dinosaur Rare Allosaurus Dinosaur Rare* Altispinax Dinosaur Rare* Amargasaurus Dinosaur Uncommon* Ammosaurus Dinosaur Uncommon* Anatotitan Dinosaur Common Anchiceratops Dinosaur Common Anchisaurus Dinosaur Common* Ankylosaurus Dinosaur Uncommon* Antarctosaurus Dinosaur Common Apatosaurus Dinosaur Uncommon* Archaeopteryx Dinosaur Rare* Archelon Dinosaur Rare Arrhinoceratops Dinosaur Common Avimimus Dinosaur Common Baby Ankylosaur Dinosaur Common Baby Ceratopsian Dinosaur Common Baby Hadrosaur Dinosaur Common Baby Raptor Dinosaur Rare Baby Sauropod Dinosaur Common Baby Theropod Dinosaur Rare Barosaurus Dinosaur Uncommon Baryonyx Dinosaur Rare* Bellusaurus Dinosaur Common Brachiosaurus Dinosaur Rare* Brachyceratops Dinosaur Uncommon Camarasaurus Dinosaur Common Camarasaurus Dinosaur Ultra Rare Camptosaurus Dinosaur Common Carnotaurus Dinosaur Rare Centrosaurus Dinosaur Common Ceratosaurus Dinosaur Rare* Cetiosaurus Dinosaur Common* Changdusaurus Dinosaur Common Chasmosaurus Dinosaur Common Chilantaisaurus Dinosaur Rare Coelophysis Dinosaur Uncommon* Coloradisaurus Dinosaur Common* Compsognathus Dinosaur Rare* Corythosaurus Dinosaur Common* Cryolophosaurus Dinosaur Rare Cynognathus Dinosaur Rare Dacentrurus Dinosaur Common* Daspletosaurus Dinosaur Rare Datousaurus Dinosaur Common Deinocheirus Dinosaur Rare* Deinonychus Dinosaur Uncommon* Deinosuchus Dinosaur Rare* Diceratops
    [Show full text]
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • Brains and Intelligence
    BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain.
    [Show full text]
  • Poropat Et Al 2017 Reappraisal Of
    Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • Dinosaurios Dinosaurios 6,50 EURO
    0 3 0 Dinosaurios 0 Dinosaurios 0 8 6 6 5 5 3 1 1 4 8 7 7 trimestre 2002 o 9 4 6,50 EURO I. ORIGEN Y DIVERSIFICACION 4 Dinosaurios gigantes de la Patagonia Leonardo Salgado y Rodolfo Coria 10 Los señores de los mares jurásicos Ryosuke Motani 18 Dinosaurios del Jurásico de América del Sur José F. Bonaparte 30 Dinosaurios polares de Australia Patricia Vickers-Rich y Thomas Hewitt Rich 36 Origen de los dinosaurios Fernando E. Novas II. COMPORTAMIENTO, EVOLUCION Y EXTINCION Sumario 46 Reptiles y mamíferos del Mesozoico de Madagascar John J. Flynn y André R. Wyss 56 Así vivía Tyrannosaurus rex Gregory M. Erickson 64 El origen de las aves y su vuelo Kevin Padian y Luis M. Chiappe 74 Reconstrucción del ataque de un dinosaurio David A. Thomas y James O. Farlow 80 Dinosaurios a la carrera R. McNeill Alexander 88 El impacto de un cuerpo extraterrestre Walter Alvarez y Frank Asaro ORIGEN Y DIVERSIFICACION LEONARDO SALGADO Y RODOLFO CORIA Dinosaurios gigantes de la Patagonia Hace millones de años, los dinosaurios se enseñorearon del planeta. Los saurópodos prosperaron en la Patagonia argentina, dejando innumerables restos óseos y huevos que dan testimonio de su diversidad y comportamiento Leonardo Salgado y Rodolfo Coria no de los aspectos de los dino- iban desde piezas delgadas y cilín- cia Fernández, en donde afloran se- saurios que más atraen la dricas hasta gruesas y espatuladas. dimentitas de la formación Cañadón U atención es el imponente ta- Todas las piezas dentarias de sau- Asfalto, de una antigüedad estimati- maño.
    [Show full text]
  • Giants from the Past | Presented by the Field Museum Learning Center 2 Pre-Lesson Preparation
    Giants from the Past Middle School NGSS: MS-LS4-1, MS-LS4-4 Lesson Description Learning Objectives This investigation focuses on the fossils of a particular • Students will demonstrate an understanding that group of dinosaurs, the long-necked, herbivores known as particular traits provide advantages for survival sauropodomorphs. Students will gain an understanding by using models to test and gather data about the of why certain body features provide advantages to traits’ functions. Background survival through the use of models. Students will analyze • Students will demonstrate an understanding of and interpret data from fossils to synthesize a narrative ancestral traits by investigating how traits appear for the evolution of adaptations that came to define a and change (or evolve) in the fossil record well-known group of dinosaurs. over time. • Students will demonstrate an understanding of how traits function to provide advantages Driving Phenomenon in a particular environment by inferring daily Several traits, inherited and adapted over millions of years, activities that the dinosaur would have performed provided advantages for a group of dinosaurs to evolve for survival. into the largest animals that ever walked the Earth. Giant dinosaurs called sauropods evolved over a period of 160 Time Requirements million years. • Four 40-45 minute sessions As paleontologists continue to uncover new specimens, Prerequisite Knowledge they see connections across time and geography that lead to a better understanding of how adaptations interact • Sedimentary rocks form in layers, the newer rocks with their environment to provide unique advantages are laid down on top of the older rocks. depending on when and where animals lived.
    [Show full text]
  • High European Sauropod Dinosaur Diversity During Jurassic–Cretaceous Transition in Riodeva (Teruel, Spain)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library [Palaeontology, Vol. 52, Part 5, 2009, pp. 1009–1027] HIGH EUROPEAN SAUROPOD DINOSAUR DIVERSITY DURING JURASSIC–CRETACEOUS TRANSITION IN RIODEVA (TERUEL, SPAIN) by RAFAEL ROYO-TORRES*, ALBERTO COBOS*, LUIS LUQUE*, AINARA ABERASTURI*, , EDUARDO ESPI´LEZ*, IGNACIO FIERRO*, ANA GONZA´ LEZ*, LUIS MAMPEL* and LUIS ALCALA´ * *Fundacio´n Conjunto Paleontolo´gico de Teruel-Dino´polis. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain; e-mail: [email protected] Escuela Taller de Restauracio´n Paleontolo´gica II del Gobierno de Arago´n. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain Typescript received 13 December 2007; accepted in revised form 3 November 2008 Abstract: Up to now, more than 40 dinosaur sites have (CPT-1074) referring to the Diplodocidae clade. New been found in the latest Jurassic – earliest Cretaceous remains from the RD-28, RD-41 and RD-43 sites, of the sedimentary outcrops (Villar del Arzobispo Formation) of same age, among which there are caudal vertebrae, are Riodeva (Iberian Range, Spain). Those already excavated, assigned to Macronaria. New sauropod footprints from the as well as other findings, provide a large and diverse Villar del Arzobispo Formation complete the extraordinary number of sauropod remains, suggesting a great diversity sauropod record coming to light in the area. The inclusion for this group in the Iberian Peninsula during this time. of other sauropods from different contemporaneous expo- Vertebrae and ischial remains from Riodevan site RD-13 sures in Teruel within the Turiasauria clade adds new evi- are assigned to Turiasaurus riodevensis (a species described dence of a great diversity of sauropods in Iberia during in RD-10, Barrihonda site), which is part of the the Jurassic–Cretaceous transition.
    [Show full text]