Dinosaurs Largest Ornithopod
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. -
R / 2J�J Ij Rjsj L)J J �� __Rj Ljlj F LANDED! VOLUME 2 - RAPTORS to PRATINCOLES
-_r_/ 2J�J iJ_rJsJ l)J_J �� __rJ lJlJ_f LANDED! VOLUME 2 - RAPTORS TO PRATINCOLES In 1990 Oxford Univer sity Press published Volume One Over 70 colourpl ates illustr ated of the Ha11dbook of Austra by JeffDavies feature nearly lia 11, New Zeala11d a11d every species. Antarctic Birds to widespread acclaim. Now Volume Two, VOLUME2 covering Raptors to Pratin Contains vultures, hawks and coles, has been completed. eagles, falcons, galliformes and quail, Malleefowl a11d megapodes, Four more volumes are to be cranes,crakes and rails, bustards, published making this the the Australian and New Zealand most detailed and up-to-date resident waders, a11d plovers, reference work of the birds of lapwi11gs a11d douerels. Australasia. COMPREHENSIVE Each volume exami11es all aspects of bird lifeinc luding: • field i£Jentiflca1ion • dis1ribu1io11 and popula1io11 • social orga11iza1io11 The Handbook is the most ex • social behaviour citing and significant project •movements in Australasian ornithology to •plumages day and will have an •breeding • habitat enormous impact on the direc • voice tion of future research and the •food conservation of Au stralasian and Antarctic birds. _ • AVAI�!�! BER t�n�r? Volume 2 $250 RAOU Volumes 1 & 2 $499 -- m! CJOlltlllllCOIIIIYIOOI ORDER FORM Place your order with Oxford University Press by: cgJ Reply Paid 1641, Oxford University Press, D Please send me __ copy/copies of the Handbook of GPO Box 2784Y, Melbourne3001 Aus1ralia11, New Zealondand A111arc1ic Birds Volume 2 at the 11 (03) 646 4200 FAX (03) 646 3251 special pre-publication price of $250 (nonnal retail price $295) plus $7.50 for po stage and handling OR D I enclose my cheque/money order for$ _______ D Please send me set/sets of Volumes I a11d 2 of the D Please charge my Visa/Mastercard/Bankcard no. -
A Reassessment of the Phylogenetic Position of Cretaceous Sauropod Dinosaurs from Queensland, Australia
Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 139-144.Buenos Aires, 30-6-2001 A ReasSessmenT of the phylogenetic position of CretaceoUS SaUROPOd dinosaURS from Queensland, Australia Ralph E. MOLNAR1 Abstract. The Cretaceous sauropod material from Queensland, Australia, has been regarded as pertaining to a persistently primitive sauropod lineage (e.g., Coombs and Molnar). The specimens derive from the Toolebuc and Allaru (Albian marine) and Winton (Cenomanian continental) Formations. Recent phyloge- netic analyses carried out by workers in Argentina, the USA and England permit a reassessment of this fragmentary material. As far as can be ascertained from the material, there is no indication from the char- acter states that more than a single taxon is represented. Character states diagnostic of the Titanosauriforrnes, the Titanosauria, the Somphospondyli and the Titanosauridae are present. Thus the Queensland material does not pertain to cetiosaurids but belongs to titanosaurs, extending their range in- to Australia Key words. Sauropods. Austrosaurus. Titanosaurs. Cretaceous. Paleozoogeography. IntroductioN (1998),has made it possible to reassess the phyloge- netic affinities of the Australian Cretaceous sauropod By the 1950's titanosaurs were widely recognized material and address the anomalous absence of ti- both as the latest sauropod group to diversify and as tanosaurs. This paper looks specifically at pre-eminently the sauropods of Gondwanaland. -
Poropat Et Al 2017 Reappraisal Of
Alcheringa For Peer Review Only Reappraisal of Austro saurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur Journal: Alcheringa Manuscript ID TALC-2017-0017.R1 Manuscript Type: Standard Research Article Date Submitted by the Author: n/a Complete List of Authors: Poropat, Stephen; Swinburne University of Technology, Department of Chemistry and Biotechnology; Australian Age of Dinosaurs Natural History Museum Nair, Jay; University of Queensland, Biological Sciences Syme, Caitlin; University of Queensland, Biological Sciences Mannion, Philip D.; Imperial College London, Earth Science and Engineering Upchurch, Paul; University College London, Earth Sciences, Hocknull, Scott; Queensland Museum, Geosciences Cook, Alex; Queensland Museum, Palaeontology & Geology Tischler, Travis; Australian Age of Dinosaurs Natural History Museum Holland, Timothy; Kronosaurus Korner <i>Austrosaurus</i>, Dinosauria, Sauropoda, Titanosauriformes, Keywords: Australia, Cretaceous, Gondwana URL: http://mc.manuscriptcentral.com/talc E-mail: [email protected] Page 1 of 126 Alcheringa 1 2 3 4 5 6 7 1 8 9 1 Reappraisal of Austrosaurus mckillopi Longman, 1933 from the 10 11 12 2 Allaru Mudstone of Queensland, Australia’s first named 13 14 For Peer Review Only 15 3 Cretaceous sauropod dinosaur 16 17 18 4 19 20 5 STEPHEN F. POROPAT, JAY P. NAIR, CAITLIN E. SYME, PHILIP D. MANNION, 21 22 6 PAUL UPCHURCH, SCOTT A. HOCKNULL, ALEX G. COOK, TRAVIS R. TISCHLER 23 24 7 and TIMOTHY HOLLAND 25 26 27 8 28 29 9 POROPAT , S. F., NAIR , J. P., SYME , C. E., MANNION , P. D., UPCHURCH , P., HOCKNULL , S. A., 30 31 10 COOK , A. G., TISCHLER , T.R. -
Fossil Focus: Dinosaurs Down Under Author(S): Stephen F
www.palaeontologyonline.com |Page 1 Title: Fossil Focus: Dinosaurs Down Under Author(s): Stephen F. Propat *1 Volume: 5 Article: 1 Page(s): 1-11 Published Date: 01/01/2015 PermaLink: http://www.palaeontologyonline.com/articles/2015/fossil-focus-dinosaurs/ IMPORTANT Your use of the Palaeontology [online] archive indicates your acceptance of Palaeontology [online]'s Terms and Conditions of Use, available at http://www.palaeontologyonline.com/site-information/terms-and-conditions/. COPYRIGHT Palaeontology [online] (www.palaeontologyonline.com) publishes all work, unless otherwise stated, under the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. This license lets others distribute, remix, tweak, and build upon the published work, even commercially, as long as they credit Palaeontology[online] for the original creation. This is the most accommodating of licenses offered by Creative Commons and is recommended for maximum dissemination of published material. Further details are available at http://www.palaeontologyonline.com/site-information/copyright/. CITATION OF ARTICLE Please cite the following published work as: Propat, Stephen F.. 2015. Fossil Focus: Dinosaurs Down Under, Palaeontology Online, Volume 5, Article 1, 1- 11. Published by: Palaeontology [online] www.palaeontologyonline.com |Page 2 Fossil Focus: Dinosaurs Down Under by Stephen F. Poropat*1,2 Introduction: Ask the average person in the street to name an Australian dinosaur, and you will be lucky if you get a correct answer. If they say crocodile, they are in the right postcode but have the wrong address. If they say emu, then they are correct, strictly speaking, but they are either lucky or being smart. If they say kangaroo, back away slowly and avoid eye contact. -
Dinosaur Species List E to M
Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon -
Body-Size Evolution in the Dinosauria
8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns. -
Contributions from the Museum of Paleontology, University of Michigan
Contributions from the Museum of Paleontology, University of Michigan VOL. 32, NO. 11, PP. 189–243 APRIL 10, 2017 MOABOSAURUS UTAHENSIS, N. GEN., N. SP., A NEW SAUROPOD FROM THE EARLY CRETACEOUS (APTIAN) OF NORTH AMERICA BY BROOKS B. BRITT1, RODNEY D. SCHEETZ1, MICHAEL F. WHITING2, AND D. RAY WILHITE3 Abstract — The Early Cretaceous was a time of dramatic change for sauropod dinosaurs in North America. Between the Late Jurassic-aged Morrison Formation and overlying Early Cretaceous strata, there was a dramatic decline in sauropod diversity. Here, we describe a new sauropod that adds to the diversity of the Early Cretaceous, from strata that can be no older than the early Aptian, (125 Ma) some 25 million years younger than the Morrison Formation. Moabosaurus utahensis, n. gen., n. sp., is diagnosed in part by the following suite of charac- ters: axially thin ventral basioccipital with posteriorly sweeping basal tubera; low-spined cervical vertebrae with neural spines that range from shallowly notched on anterior cervical vertebrae to shallow, but widely notched on middle and some posterior cervical vertebrae; posterior cervical and anterior dorsal neural spines with extremely low, axially thin, laterally wide ridges at the level of the zygapophyses; some cervical ribs with bifid posterior shafts; anterior and posterior caudal vertebrae with strongly procoelous centra, middle caudal vertebrae with mildly procoelous centra, and distal caudal vertebrae with moderately-to-strongly procoelous centra. To determine the phylogenetic position of Moabosaurus we utilized three different datasets and performed four analyses. All results are in agreement that Moabosaurus is a neosauropod. The two most resolved trees indicate it is a macronarian, specifically a basal titanosauriform. -
Subject Index
Cambridge University Press 0521811724 - The Evolution and Extinction of the Dinosaurs, Second Edition David E. Fastovsky and David B. Weishampel Index More information Subject index Bold type indicates figures. Absolute age 23–5 Arctic dinosaurs 372–373, 373 Actinopterygii 67 Asteroid impact 425, 426–32 Aguja Formation (Upper Cretaceous, USA) 401 see also Cretaceous–Tertiary boundary; Alxa Desert (China) 297 Iridium; Chicxulub Amarga Canyon (Argentina) 262 Affects of 432–4 American Museum of Natural History (USA) Indicators of 426, 427–9, 428, 429, 430, 431 18n, 19, 253, 259, 292 Atlas Mountains (Morocco) 263 Amnion 77 Auca Mahuevo (Upper Cretaceous, Argentina) Amniota 245, 246 Diagnostic characters 77, 78 Aves, see Theropoda Major groups 78 Azendoh (Morocco) 261 Amphibia 77, 77n, 393 Amur River (Sino-Russian border) 217 Baharije Oasis (Egypt) 291, 292 Anapsida 78, 79–80 Barun Goyot Formation (Upper Cretaceous, Anhui Province (China) 162 Mongolia) 401 Ankylosauria Bernissart (Belgium) 212, 213 Age 133, 396, 397 Biological classification 68 Armament 133, 137, 138, 139 Biostratigraphy 22, 27–8 Behavior 134–7, 138–9 Birds, see Theropoda Clades of 133, 139–42 Body plans 65 Cladogram of, see Cladograms Bone histology 362–7, 363 Derived characters of 140, 139–41, 142 British Museum (Natural History) 234, 258, 336 Distribution 134, 135 Bug Creek (USA) 441 Evolution of 139 Burgess Shale (Middle Cambrian, Canada) 64 Fermentation in 136, 137 Burial 6, 7, 8, 9, 10 History of discovery 142–5 Inferred intelligence 361 Canadian Dinosaur Rush 182, 183, -
Download a PDF of This Web Page Here. Visit
Dinosaur Genera List Page 1 of 42 You are visitor number— Zales Jewelry —as of November 7, 2008 The Dinosaur Genera List became a standalone website on December 4, 2000 on America Online’s Hometown domain. AOL closed the domain down on Halloween, 2008, so the List was carried over to the www.polychora.com domain in early November, 2008. The final visitor count before AOL Hometown was closed down was 93661, on October 30, 2008. List last updated 12/15/17 Additions and corrections entered since the last update are in green. Genera counts (but not totals) changed since the last update appear in green cells. Download a PDF of this web page here. Visit my Go Fund Me web page here. Go ahead, contribute a few bucks to the cause! Visit my eBay Store here. Search for “paleontology.” Unfortunately, as of May 2011, Adobe changed its PDF-creation website and no longer supports making PDFs directly from HTML files. I finally figured out a way around this problem, but the PDF no longer preserves background colors, such as the green backgrounds in the genera counts. Win some, lose some. Return to Dinogeorge’s Home Page. Generic Name Counts Scientifically Valid Names Scientifically Invalid Names Non- Letter Well Junior Rejected/ dinosaurian Doubtful Preoccupied Vernacular Totals (click) established synonyms forgotten (valid or invalid) file://C:\Documents and Settings\George\Desktop\Paleo Papers\dinolist.html 12/15/2017 Dinosaur Genera List Page 2 of 42 A 117 20 8 2 1 8 15 171 B 56 5 1 0 0 11 5 78 C 70 15 5 6 0 10 9 115 D 55 12 7 2 0 5 6 87 E 48 4 3 -
From the Early Cretaceous Wonthaggi Formation
Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. -
For Review Only
Zoological Journal of the Linnean Society Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution Journal:For Zoological Review Journal of the Linnean Only Society Manuscript ID ZOJ-05-2018-3315.R1 Manuscript Type: Original Article biogeography < Geography, dispersal < Geography, extinction < Evolution, Gondwana < Palaeontology, Mesozoic < Palaeontology, Laurasia < Keywords: Palaeontology, Jurassic < Palaeontology, Cretaceous < Palaeontology, phylogenetics < Phylogenetics The Late Jurassic Tendaguru Formation of Tanzania, southeastern Africa, records a diverse and abundant sauropod fauna, including the flagellicaudatan diplodocoids Dicraeosaurus and Tornieria, and the brachiosaurid titanosauriform Giraffatitan. However, the taxonomic affinities of other sympatric sauropod taxa and remains are poorly understood. Here, we critically reassess and redescribe these problematic taxa, and present the largest phylogenetic analysis for sauropods (117 taxa scored for 542 characters) to explore their placement within Eusauropoda. A full re-description of the holotype of Janenschia, and all referable remains, supports its validity and placement as a non- Abstract: neosauropod eusauropod. New information on the internal pneumatic tissue structure of the anterior dorsal vertebrae of the enigmatic Tendaguria tanzaniensis, coupled with a full re-description, results in its novel placement as a turiasaur. A previously referred caudal sequence cannot be assigned to Janenschia and displays several features that indicate a close relationship with Middle–Late Jurassic East Asian mamenchisaurids. It can be diagnosed by six autapomorphies, and we erect the new taxon Wamweracaudia keranjei n. gen. n. sp. The Tendaguru Formation shares representatives of nearly all sauropod lineages with Middle Jurassic–earliest Cretaceous global faunas, but displays a greater range of diversity than any of those faunas considered individually.