Lunar Crater Morphometry: New Data

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Crater Morphometry: New Data LUNAR CRATER MORPHOMETRY: NEW DATA. C. A. Wood, Dept. of Geological Sciences, Brown Univ., Providence, RI 02912 and L. Andersson, Lunar and Plan- etary Lab. , Uni v. of Arizona, Tucson, AZ 85721. Investigators have long recognized that systematic morphologic changes occur with increasing diameters in lunar craters; simple bowl-like pits give way to broad craters characterized by central peaks and terraced walls. ~ence' called the smaller landforms "simple craters" and the larger ones with peaks and terraces "complex craters." Previous studies of the transition from sim- ple to complex complex craters were based on restricted samples of the lunar crater population. We now document changes in crater morphology for all fresh nearside craters >7 km, and for ~1500smaller ones. The large data base per- mits a detailed description of the onset diameters and ranges of significant occurrences for flat floors, central peaks, and wall slump features. Data source: Our data come from a preliminary version of the new "LPL Cata- log of Lunar which includes morphometric information for ~11500 craters of all degradation classes on the lunar nearside. To isolate pristine morphologies from effects due to degradation only the 3001 freshest (LPL class 1) craters are used. Unlike previous crater listings each crater in the new catalog is classified on the basis of overall morphology. A1 though 18 differ- ent morphological types are now recognized, only about a third are numerically significant; the others represent uncomnon but distinctive morphological vari- ations (e-g. , concentric craters). The principle types and their prototype craters are: ALC - (A1 bategnius C) bowl-shaped craters with smooth rims, di- ameters up to ~20km; BIO - (Biot) similar to ALC but with a flat floor having a clear break in slope at the contact with the crater wall; TRI - (Triesnecker) craters typically between 15-40 km diameter with wall slumps or scallops; TYC - (Tycho) multiple tiers of terraces, large flat floors, diameters from ~25- 175 km; SOS - (Sosigenes) terrace-free rims varying from 5-40 km diameter, shallow craters with flat floors. ALC and BIO correspond to the Class I11 craters of Pohn and Offield4, TRI are approximately their Class 11, and TYC are Class 8. Pohn and Offield did not recognize SOS (or the other less common LPL types) as fresh crater morphologies. The remaining LPL morphology types represent only 1%of class 1 craters, and many may be volcanic or volcanically modified craters. Depth-diameter relations: In Fig. 1 the depths (d) and diameters (D) of each of the main morphological types are compared. ALC-BIO have nearly identical d-D relations, TRI-TYC follow a second trend, and SOS defines a third5. Least square fits for each trend are given in Table I. The transition between simple (ALC-BIO) and complex (TRI-TYC) craters occurs over a diameter range (15-20 km) in which both types are found. This agrees with Pike's6 value of 17.5 km, but not with the 6.2 km estimate by Smith and sanchez7. D-d rela- tions for SOS craters do not inflect at the transition zone, suggesting that these craters are not part of the main sequence of impact craters. The parel- lelism of the d-D plots for SOS and ALC-BIO suggests that SOS are ALC-BIO types shallowed by lava flooding. Two observations argue against that inter- pretation: SOS craters tend to be more polygonal and occur at larger diameters than ALC-BIO craters. There is, however, no compelling evidence that SOS are entirely of volcanic origin. 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System LUNAR CRATER MORPHOMETRY: NEW DATA Wood, C. A. Flat floors: Nearly all class 1 craters, except ALC, have flat floors (Fig. 2). Table 1 includes slope-intercept values for exponential least squares fits to floor diameter vs. D for each morphological type. Central peaks: The occurrence of central peaks in class 1 craters varies ac- cording to crater diameter8 and morphological type (Fig. 3). The substrate in which craters form also effects peak occurrenceg, but the differences due to types are significant enough to ignore substrate effects in this preliminary analysis. Fig. 3 sumnarizes the new results, and makes apparent a major dif- ference between 2 similar crater types, ALC and BIO. Whereas no peaks have been detected in the 1670 class 1 ALC craters, peaks are comnonly found in BIO craters, increasing from 4% (D=O-5 km) to 35% (D=15-20 km). Wall failure: Onset of wall slumps (TRI) occurs at D=15 km, by D=20-25 km 50% of class 1 craters have slumped rims, and beyond D=50 km wall failure occurs excl usi vely by terracing (TYC) . Discussion: The relationship between ALC and BIO is unclear. As well as the absence of flat floors and central peaks discussed above, interior wall slopes of ALC craters are systematically 50-60 less steep than for BIO. The major process of lunar crater degradation - mass wasting - tends to decrease slopes1O, suggesting that bowl -shaped craters (ALC) are erosional modi fica- tions of flat-floored craters (BIO). A small amount of mass wasting of rim materials buries tiny peaks, reduces wall slopes, and smooths out the wall- floor inflection without significantly affecting d-D relations. The transition from simple to complex craters is commonly said to re- flect the onset of flat fl oors, central peaks, and wall sl umps/terracesl '7'11. The new data presented here illustrate (a) that flat floors are characteristic of a1 1 unmodified craters (i .e., a1 1 types but ALC) from a few kilometers di- ameter to hundreds of kilometers; (b) that central peaks become progressively more abundant with diameter (4% at D=0-5 km to 100% for D235 km); and (c) that wall failure appears at D=15 km. Thus, there is no onset diameter for flat floors, and central peaks exist in craters as small as D=2.6 km. The abrupt transition from simple to complex craters in due only to the onset of wall failure and associated shallowing. The independent development of central peaks and wall terraces is strong evidence against any theory in which peak formation is related to wall failure (e.g., {I ,121). Additionally, the occur- rence of stratigraphic central uplifts in terrestrial craters is insufficient evidence to consider craters to be "complex," and calls into question argu- ments for gravity scaling based on comparison of uplifts in terrestrial craters and onset of terraces in lunar craters. References: lDence, M. R. (1968) Shock Metamorphosis -of Natural Materials, 169. 2Wood, C. A. and Andersson, L. (IF(1978)~P~ Catalog ofTunar Cratmrep.). 3Wood, C. A. (1971) --Moon 3, 408. sPohn, H. A. and Offield, T. W. (1970) USGS Prof. Pa . 700-C, C153. ~WOO~,C. A. (1973) Bull. Am. Astron. Soc. 5, 36- we,+ J.7574) GRL 1, 291. 7Smith, E. Ixdxnc-. c(1g75) Mod. Geol . 5, 175. 8~ood,C.K. (1973) Icarus 20, 503. 'Cintala, M. J., Wood, C. A. and Hezd, J. W. (1977) Proc. LunarLunar? Sci. CEf. 8th, 3409. locannon, P. J. (1970)- Sky and Telescope 40, 215"Howard,215"Howard,xA(1974)~roc. K. ~(1974)~roc. Lunar Sci . -~onf.Conf. 5th, 61. Tuaide, W. L., Gault, D. E., and Schmidt, Rx(1965JWAcad.sci.m -- - -123, 563. 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System LUNAR CRATER MORPHOMETRY: NEW DATA Wood, C. A. Fig. 1 : Depths vs. Diameters - 10 - Fig. 3:Central Peaks - Table 1: Least Squares Relations Between Fresh Lunar Crater Depths, Diameters, and Floor Diameters. Morph Dia (km) d=aD b F=~D' ; Type Range a b *SE N r s kSE N ALC 1-20 .20 .92 .21 902 - - - - BIO 1-20 .18 1.00 .28 681 .131.25 .71 769 SOS 5-40 .I4 -91 .56 133 .32 1.15 1.82 173 lRI 15-40 1.51 .18 .60 75 .30 1.14 3.24 92 TY C 25-1 75 .56 .45 .48 13 .20 1.25 3.28 41 d=crater depth, D=crater diameter, F=floor diameter, SE=std. error of estimate, all in km; preliminary data. ALC BIO SOS TR I TYC 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System .
Recommended publications
  • 6Th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017
    6th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017 Jackson School of Geosciences GSEC Graduate Student Executive Committee Welcome to the 6th Annual Jackson School Research Symposium It is with great pleasure we welcome you all to the 6th Annual Jackson School Research Symposium at UT-Austin! This symposium would not have been possible without the hard work of student volunteers, the support of faculty/research scientists, and generous support from ConocoPhillips. Thank you for taking part in supporting our students and growing research program within the Jackson School. Enjoy the posters! Schedule of Presentations and Events Breakfast, A.M. session poster set-up...............................................8:30 a.m. Early Career Graduate (ECG) posters......................................9:00-11:30 a.m. Late Career Masters (LCM) posters.........................................9:00-11:30 a.m. Lunch, A.M. session poster take-down.............................................11:30 a.m. P.M. session poster set-up................................................................12:30 p.m. Undergraduate (U) posters….....................................................1:00-3:30 p.m. Late Career PhD (LCPhD) posters.............................................1:00-3:30 p.m. Happy hour/judging............................................................................3:30 p.m. Awards/closing....................................................................................4:00 p.m. ii Table of Contents Program
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • 304 Index Index Index
    _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R.
    [Show full text]
  • Unbroken Meteorite Rough Draft
    Space Visitors in Kentucky: Meteorites and Asteroid “Ida.” Most meteorites originate from asteroids. Meteorite Impact Sites in Kentucky Meteorite from Clark County, Ky. Mercury Earth Saturn Venus Mars Neptune Jupiter William D. Ehmann Asteroid Belt with contributions by Warren H. Anderson Uranus Pluto www.uky.edu/KGS Special thanks to Collie Rulo for cover design. Earth image was compiled from satellite images from NOAA and NASA. Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Space Visitors in Kentucky: Meteorites and Meteorite Impact Sites in Kentucky William D. Ehmann Special Publication 1 Series XII, 2000 i UNIVERSITY OF KENTUCKY Collie Rulo, Graphic Design Technician Charles T. Wethington Jr., President Luanne Davis, Staff Support Associate II Fitzgerald Bramwell, Vice President for Theola L. Evans, Staff Support Associate I Research and Graduate Studies William A. Briscoe III, Publication Sales Jack Supplee, Director, Administrative Supervisor Affairs, Research and Graduate Studies Roger S. Banks, Account Clerk I KENTUCKY GEOLOGICAL SURVEY Energy and Minerals Section: James A. Drahovzal, Head ADVISORY BOARD Garland R. Dever Jr., Geologist V Henry M. Morgan, Chair, Utica Cortland F. Eble, Geologist V Ron D. Gilkerson, Vice Chair, Lexington Stephen F. Greb, Geologist V William W. Bowdy, Fort Thomas David A. Williams, Geologist V, Manager, Steven Cawood, Frankfort Henderson office Hugh B. Gabbard, Winchester David C. Harris, Geologist IV Kenneth Gibson, Madisonville Brandon C. Nuttall, Geologist IV Mark E. Gormley, Versailles William M. Andrews Jr., Geologist II Rosanne Kruzich, Louisville John B. Hickman, Geologist II William A. Mossbarger, Lexington Ernest E. Thacker, Geologist I Jacqueline Swigart, Louisville Anna E.
    [Show full text]
  • Acceleration, 274 Centrifugal, 236 Acceleration of Gravity, 230, 274
    Cambridge University Press 978-1-107-00653-9 — Geodynamics Donald Turcotte , Gerald Schubert Index More Information Index acceleration, 274 approximation foreland, 157 centrifugal, 236 Dupuit, 430 marginal, 15 acceleration of gravity, 230, 274 finite difference, 496 ringed, 68 accreting plate boundaries, 2, 7 aquifer, 272 sedimentary, 92, 155, 212 accretionary plate margins, 52 confined porous, 428 bathymetry, 209 accretionary prism, 12 unconfined, 430 beach terraces activation energy, 348 aquifers, 162, 264, 425 elevated, 280 activation volume, 348 arc bedding planes, 169 active continental margins, 45 island, 4 behavior adiabat, 219 Archimedes’ principle, 94, 298 adiabatic compressional heating, 220 argon, 479 Newtonian fluid, 61 adiabatic temperature gradient, 219 arm non-Newtonian fluid, 61 admittance, 253 failed, 43 plastic, 379 age dating, 484 moment, 100, 139 stick–slip, 386, 389, 399, 402 age of the Earth, 183, 187 aspect ratio, 320 belt age of the lithosphere, 189 asteroid, 79 thrust, 48 age of the seafloor, 190 asthenosphere, 2 benchmarks, 116 age of the solar system, 465, 470 atmospheric erosion and deposition, bending, 130, 138 Airy compensation, 254 76 cylindrical, 139 Airy geoid anomaly, 256 aulacogen, 43 plastic, 292 albedo, 84 Avogadro’s number, 340 plate, 381 allochthonous sheet, 397 axes of strain bending moment, 139 alluvial fan, 225 principal, 115 critical, 382 Alvin,56 axis Amonton’s law, 390 principal, 102 bending of the elastic lithosphere, 514 analogy azimuth biharmonic equation, 276 ping-pong ball, 12 magnetic, 25 binary
    [Show full text]
  • ANTIFIERS *Europe
    DOCUMENT RESUME ED 111 494 PS 008 006 AUTHOR Mugglin, Gustav TITLE Children's Recreation Activities: Facilities and Animation. INSTITUTION Council for Cultural Cooperation, Stra'S'bourg (France). PUB DATE 74 NOTE. 177p. AVAILABLE FROM Manhattan Publishing Colipany, 225 Lafayette Street, New York, New York. 10012 (Paper, $6.00) EDRS PRICE MF-$0.76 Plus Pottage. HC Not Available from ERRS., ,DESCRIPTORS Administration; Communit,Recreaticn Programs; _Curriculum; *Elementary Secondary Education; *Foreign Countries; *Physical Activities; Physidal Development; Physical Facilities; Playground Activities; *Playgrounds; *Recreational Activities; Salaries; Theater Arts; Training ANTIFIERS *Europe ABSTRACT This study assessed recreational facilities for European children 5 to 15 years of age, and discussed the best means of meeting needs. The first chapter reviews the educational aspects of children's playr-including physical, social, andcreative development7-as they pertain to various age groups. .The second chapter considers,the types of facilities that can be used for play and,recreation. These include play areas in houses and flats, outdoor playgrounds, recreational areas and...buildings within and near towns and villages, and camps and family vacation facilities. In Chapter 3, examples of existing European facilities, similar to those suggested in Chapter -2 are described; excellent diagrams, maps fnd photographs accompany the text. Chapter 4..concludes the study with an outline of methods of selecting, training and managing recreation center staff, members, including directors, auxiliary leaders, and part-time or voluntary leaders and helpers. Examples of training programs from several countries are presented in detail. (ED) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from, other sources. ERIC makes every effort * * to obtain the best copy available.
    [Show full text]
  • Histoire Cosmique Des Hommes
    MICHEL-ALAIN COMBES L’HISTOIRE COSMIQUE DES HOMMES 1 2 Michel-Alain COMBES L’HISTOIRE COSMIQUE DES HOMMES © Michel-Alain Combes, 2011 3 4 SOMMAIRE Chapitre 1 : Catastrophes célestes dans l'Antiquité , p. 7 Chapitre 2 : Déluge et catastrophisme biblique , p. 21 Chapitre 3 : La grande époque des catastrophistes , p. 37 Chapitre 4 : Impactisme et catastrophisme aujourd'hui , p. 59 Chapitre 5 : Comètes et astéroïdes : la menace du ciel , p. 75 Chapitre 6 : La comète brisée , p. 99 Chapitre 7 : Toungouska 1908 , p. 121 Chapitre 8 : Les fausses pistes , p. 141 Chapitre 9 : Les cataclysmes terrestres , p. 167 Chapitre 10 : Les cataclysmes cosmiques , p. 191 Chapitre 11 : L'inconnu, l'avenir , p. 225 Chapitre 12 : Une révolution scientifique et culturelle , p. 247 Bibliographie, p. 259 5 6 CHAPITRE PREMIER CATASTROPHES CÉLESTES DANS L'ANTIQUITÉ Le souvenir obsessionnel de grands cataclysmes L'idée que la Terre a souvent été victime de catastrophes de grande ampleur, d'origine cosmique ou terrestre, n'est pas nouvelle, loin de là. C'était un point commun à toutes les mythologies des peuples anciens, aussi loin que l'on remonte dans le temps, même si le nombre et les causes de ces cataclysmes variaient d'une mythologie à l'autre. Des concepts comme le Chaos , le Déluge ou la chute du ciel faisaient partie de leur histoire et de leur imaginaire. Dans ce chapitre, il est question de certains aspects historiques et mythologiques du problème. Ce sera l'occasion de retrouver quelques grands noms de l'Antiquité qui s'intéressaient au passé et à l'avenir de la Terre, désirant percer les secrets de l'un et de l'autre, et de rappeler aussi quelques textes représentatifs explicites, textes qui ont eu la chance de parvenir jusqu'à nous, contrairement à d'autres qui sont malheureusement perdus.
    [Show full text]
  • Modèles Et Algorithmes Pour La Simulation Du Contact Frottant Dans Les Matériaux Complexes : Application Aux Milieux Fibreux Et Granulaires Gilles Daviet
    Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires Gilles Daviet To cite this version: Gilles Daviet. Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires. Algorithme et structure de données [cs.DS]. Université Grenoble Alpes, 2016. Français. NNT : 2016GREAM084. tel-01684673 HAL Id: tel-01684673 https://tel.archives-ouvertes.fr/tel-01684673 Submitted on 15 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Mathématiques-informatique Arrêté ministériel du 25 mai 2016 Présentée par Gilles Daviet Thèse dirigée par Florence Bertails-Descoubes préparée au sein de l’ équipe-projet Bipop, Inria et Laboratoire Jean Kuntzmann et de l’école doctorale “Mathématiques, Sciences et Technologies de l’Information, Informatique” Modèles et algorithmes pour la simulation du contact frottant dans les matériaux
    [Show full text]
  • The Physiologist
    The A Publication of The American Physiological Society Physiologist Volume 40 Number 6 December 1997 Experimental Biology and NASA in the Twenty-First Century Inside Daniel S. Goldin, NASA Administrator XXXIII IUPS As I talk about experimental biology, I would like Congress to tell a story. Out of the dark nothingness, the uni- verse exploded. There was force and fury, and in p. 282 minutes the first nuclei formed out of the plasma. It took about 200,000 years of expansion and con- tinual cooling until the temperature dropped to 1998 Officers 4,000ºK and hydrogen and helium atoms began to and Committees form. All of a sudden, once they formed, the uni- verse became transparent. It had been opaque; it p. 287 was literally optically opaque. The cooling contin- ued. There were some slight perturbations we have picked up with the Cosmic Background Explorer Experimental spacecraft, but we cannot correlate the level of Biology Preview fluctuations we have seen with the fact that con- p. 294 densation started and galaxies and stars formed. That is to be left to further exercises. We have a lot of work to do on that. At this point, stars ignited and began to form Daniel S. Goldin Call for fusion factories. They aged, and the more they Nominations: aged, the higher the temperatures got. We began to giant stars blew up, and the interstellar medium Editorship get heavier elements. We had massive explosions, became richer and richer. With our advanced tele- of AJP: Heart with these aging stars exploding on themselves, scopes over the last decade, we have picked up and it threw this material out.
    [Show full text]
  • Covers 2003 Number 4.Indd
    C ALIFORNIA INSTITUTE OF TECHNOLOGY engineeringE& andS science Volume LXVI, Number 4, IN THIS ISSUE Spitzer’s Skies Napoleon’s Constellations Naegler’s Amoebas The Mudeo returned to Caltech after a six-year absence. Organized by Jeff Cox, a senior in mechanical engineering, it happened on January 19. Mudeos are traditionally held at construction sites, in this case the future home of a 700-space underground parking structure going in beneath the athletic field north of the gymnasiums. The decades-old tradition is designed to maximize the muck per square inch of skin, with events including a tug o’ war, wheelbarrow races, a “tire spree,” keep-away, and wrasslin’ matches. What does one wear to a Mudeo? “Whatever you don’t mind throwing away,” says Cox. engineering& and science C a l i f o r n i a Institute of Technology Volume LXVI, Number 4, 2003 E S �2 Random Walk 8 The Far, the Cold, and the Dusty — by Douglas L. Smith Caltech and JPL collaborate on a new infrared telescope in space that will change � the way we see the universe. Here’s a first peek. 20 Egyptian Stars under Paris Skies — by Jed Z. Buchwald An ancient (but how ancient?) zodiac rouses Napoleonic-era physicists to attempt calculations of the earth’s age. 32 Brain Worms and Brain Amoebas: They Do Exist — by Andrea Manzo A Core 1 (science writing) paper gives us more things to worry about. On the cover: Like the five Departments blind men’s descriptions of the elephant, how the 37 Books cosmos appears depends on who’s looking.
    [Show full text]