― D03 - 1 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト

Total Page:16

File Type:pdf, Size:1020Kb

― D03 - 1 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト 複素環式化合物 D03+ Alkaloids D03-10+ Aconitine D03-10-10 # Acridones D03-10-20+ # Acronine D03-10-20-10 # Amaryllidaceae Alkaloids D03-10-30+ Galantamine D03-10-30-10 # Anabasine D03-10-40 # Arecoline D03-10-50 # Benzophenanthridines D03-10-60 # Benzylisoquinolines D03-10-70+ # Aporphines D03-10-70-10+ # Apomorphine D03-10-70-10-10 # Berberine Alkaloids D03-10-70-20+ # Berberine D03-10-70-20-10 # Bicuculline D03-10-70-30 # * Cepharanthine D03-10-70-40 # Papaverine D03-10-70-50+ # Drotaverin D03-10-70-50-10 # Ethaverine D03-10-70-50-20 # Tetrahydropapaveroline D03-10-70-50-30 # Toxiferine D03-10-70-60+ # Alcuronium D03-10-70-60-10 # Tubocurarine D03-10-70-70+ # Dimethyltubocurarinium Chloride D03-10-70-70-10 # Betalains D03-10-80+ # Betacyanins D03-10-80-10 # Betaxanthins D03-10-80-20 # Camptothecin D03-10-90+ # Belotecan D03-10-90-10 # Diflomotecan D03-10-90-20 # Exatecan D03-10-90-30 # Irinotecan D03-10-90-40 # Rubitecan D03-10-90-50 # Topotecan D03-10-90-60+ # Delimotecan D03-10-90-60-10 # Cinchona Alkaloids D03-10-100+ Quinidine D03-10-100-10 # Quinine D03-10-100-20 # Colchicine D03-10-110+ # Demecolcine D03-10-110-10 # Lumicolchicines D03-10-110-20 1-Deoxynojirimycin D03-10-120+ # Emiglitate D03-10-120-10 # * Migalastat D03-10-120-20 # Miglitol D03-10-120-30 # Miglustat D03-10-120-40 # Dihydro-Beta-Erythroidine D03-10-130 # Emetine D03-10-140+ # Dehydroemetine D03-10-140-10 # Ergot Alkaloids D03-10-150+ Ergolines D03-10-150-10+ # Cabergoline D03-10-150-10-10 # Ergonovine D03-10-150-10-20+ # Methylergometrine D03-10-150-10-20-10 # Lisuride D03-10-150-10-30+ # Terguride D03-10-150-10-30-10 # Lysergic Acid D03-10-150-10-40+ # Lysergic Acid Diethylamide D03-10-150-10-40-10 # ― D03 - 1 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト Mergocriptine D03-10-150-10-50 # Metergoline D03-10-150-10-60 # Methysergide D03-10-150-10-70 # Nicergoline D03-10-150-10-80 # Pergolide D03-10-150-10-90 # Ergotamines D03-10-150-20+ # Bromocriptine D03-10-150-20-10 # Dihydroergocornine D03-10-150-20-20 # Dihydroergocristine D03-10-150-20-30 # Dihydroergocryptine D03-10-150-20-40 # Dihydroergotamine D03-10-150-20-50 # Dihydroergotoxine D03-10-150-20-60+ # Ergoloid Mesylates D03-10-150-20-60-10 # Ergotamine D03-10-150-20-70 # Harringtonines D03-10-160+ # Omacetaxine Mepesuccinate D03-10-160-10 # Indole Alkaloids D03-10-170+ # Harmaline D03-10-170-10 # Harmine D03-10-170-20 # Physostigmine D03-10-170-30+ # Eptastigmine D03-10-170-30-10 # Psilocybine D03-10-170-40 # Secologanin Tryptamine Alkaloids D03-10-170-50+ # Ajmaline D03-10-170-50-10+ # Lorajmine D03-10-170-50-10-10 # Prajmaline D03-10-170-50-10-20 # Ellipticines D03-10-170-50-20+ # Elliptinium Acetate D03-10-170-50-20-10 # Ibogaine D03-10-170-50-30 # Strychnine D03-10-170-50-40 # Vinca Alkaloids D03-10-170-50-50+ # Vinblastine D03-10-170-50-50-10+ # Vinflunine D03-10-170-50-50-10-10 # Vinorelbine D03-10-170-50-50-10-20 # Vintriptol D03-10-170-50-50-10-30 # Vinburnine D03-10-170-50-50-20 # Vincamine D03-10-170-50-50-30+ # Brovincamine D03-10-170-50-50-30-10 # Vindeburnol D03-10-170-50-50-30-20 # Vinconate D03-10-170-50-50-40 # Vincristine D03-10-170-50-50-50 # Vindesine D03-10-170-50-50-60 # Vinpocetine D03-10-170-50-50-70 # Yohimbine D03-10-170-50-60+ # Methoserpidine D03-10-170-50-60-10 # Reserpine D03-10-170-50-60-20+ # Deserpidine D03-10-170-50-60-20-10 # Rescimetol D03-10-170-50-60-20-20 # Rescinnamine D03-10-170-50-60-20-30 # Syrosingopine D03-10-170-50-60-20-40 # Staurosporine D03-10-170-60+ # Midostaurin D03-10-170-60-10 # Lobeline D03-10-180 # Mescaline D03-10-190 # Muscarine D03-10-200 # Pilocarpine D03-10-210 # Pyrrolizidine Alkaloids D03-10-220+ # Intermedine D03-10-220-10 # Monocrotaline D03-10-220-20 # ― D03 - 2 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト Ryanodine D03-10-230 # Salsoline Alkaloids D03-10-240 # Solanaceous Alkaloids D03-10-250+ Belladonna Alkaloids D03-10-250-10+ # Atropine Derivatives D03-10-250-10-10+ # Atropine D03-10-250-10-10-10+ # Hyoscyamine D03-10-250-10-10-10-10 # Atropine Methonitrate D03-10-250-10-10-20 # Butropium Bromide D03-10-250-10-10-30 # Flutropium Bromide D03-10-250-10-10-40 # Ipratropium Bromide D03-10-250-10-10-50+ # * Salbutamol-Ipratropium Bromide D03-10-250-10-10-50-10 # Scopolamine Hydrobromide D03-10-250-10-20 # Capsaicin D03-10-250-20+ # Nonivamide D03-10-250-20-10 # Nicotine D03-10-250-30+ # Rivanicline D03-10-250-30-10 # Solanine D03-10-250-40 # Tomatine D03-10-250-50 # Sparteine D03-10-260 # Swainsonine D03-10-270 # Tropanes D03-10-280+ # Aclidinium Bromide D03-10-280-10 # Belladonna Alkaloids D03-10-280-20+ # Atropine Derivatives D03-10-280-20-10+ # Atropine D03-10-280-20-10-10+ # Hyoscyamine D03-10-280-20-10-10-10 # Atropine Methonitrate D03-10-280-20-10-20 # Butropium Bromide D03-10-280-20-10-30 # Flutropium Bromide D03-10-280-20-10-40 # Ipratropium Bromide D03-10-280-20-10-50+ # * Salbutamol-Ipratropium Bromide D03-10-280-20-10-50-10 # Bemesetron D03-10-280-30 # Benztropine D03-10-280-40 # Cocaine D03-10-280-50+ # Crack Cocaine D03-10-280-50-10 # Iometopane 123I D03-10-280-50-20 # Homatropine D03-10-280-60 # Scopolamine Derivatives D03-10-280-70+ # Butylscopolammonium Bromide D03-10-280-70-10 # Cimetropium Bromide D03-10-280-70-20 # N-Methylscopolamine D03-10-280-70-30 # Oxitropium Bromide D03-10-280-70-40 # Scopolamine Hydrobromide D03-10-280-70-50 # Tiotropium Bromide D03-10-280-70-60 # Veratrum Alkaloids D03-10-290+ # Cevanes D03-10-290-10+ # Germine Acetates D03-10-290-10-10 # Protoveratrines D03-10-290-10-20 # Veratridine D03-10-290-10-30 # Veratrine D03-10-290-10-40 # Xanthines D03-10-300+ # Caffeine D03-10-300-10+ # * Caffeine Benzoate D03-10-300-10-10 # Cipamfylline D03-10-300-20 # Denbufylline D03-10-300-30 # Enprofylline D03-10-300-40 # Propentofylline D03-10-300-50 # Theobromine D03-10-300-60 # ― D03 - 3 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト Theophylline D03-10-300-70+ # Choline Theophyllinate D03-10-300-70-10 # Doxofylline D03-10-300-70-20 # Etofylline D03-10-300-70-30 # Proxyphylline D03-10-300-70-40 # Tazifylline D03-10-300-70-50 # Uric Acid D03-10-300-80 # Xanthine D03-10-300-90 # アヘンアルカロ イド D03-10-310+ # Morphinans D03-10-310-10+ # Benzomorphans D03-10-310-10-10+ # Bremazocine D03-10-310-10-10-10 # Pentazocine D03-10-310-10-10-20 # Phenazocine D03-10-310-10-10-30 # Buprenorphine D03-10-310-10-20+ # * Buprenorphine-Naloxone D03-10-310-10-20-10 # Butorphanol D03-10-310-10-30 # Dextromethorphan D03-10-310-10-40 # Dextrorphan D03-10-310-10-50 # Dimemorfan D03-10-310-10-60 # Diprenorphine D03-10-310-10-70 # Etorphine D03-10-310-10-80 # Levallorphan D03-10-310-10-90 # Levorphanol D03-10-310-10-100 # Morphine Derivatives D03-10-310-10-110+ # Codeine D03-10-310-10-110-10+ # Dihydrocodeine D03-10-310-10-110-10-10 # Hydrocodone D03-10-310-10-110-10-20 # Oxycodone D03-10-310-10-110-10-30 # Dihydromorphine D03-10-310-10-110-20 # Ethylmorphine D03-10-310-10-110-30 # Heroin D03-10-310-10-110-40 # Hydromorphone D03-10-310-10-110-50 # Morphine D03-10-310-10-110-60 # Morphine 6-Glucuronide D03-10-310-10-110-70 # Oxymorphone D03-10-310-10-110-80 # Thebaine D03-10-310-10-110-90+ # Drotebanol D03-10-310-10-110-90-10 # Nalbuphine D03-10-310-10-120 # Nalfurafine D03-10-310-10-130 # Nalorphine D03-10-310-10-140 # Naloxone D03-10-310-10-150+ # * Buprenorphine-Naloxone D03-10-310-10-150-10 # Naltrexone D03-10-310-10-150-20+ # Methylnaltrexone Bromide D03-10-310-10-150-20-10 # * Naldemedine D03-10-310-10-150-20-20 # Nalmefene D03-10-310-10-150-20-30 # Noscapine D03-10-310-20 # Papaverine D03-10-310-30+ # Drotaverin D03-10-310-30-10 # Ethaverine D03-10-310-30-20 # Gadomelitol D03-20 # Gadoteric Acid D03-30 # Gadoteridol D03-40 # Heterocyclic Acids D03-50+ Cinoxacin D03-50-10 # Indoleacetic Acids D03-50-20+ # Etodolac D03-50-20-10 # Hydroxyindoleacetic Acid D03-50-20-20 # ― D03 - 4 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト Pactimibe D03-50-20-30 # Proglumetacin D03-50-20-40 # Isonicotinic Acids D03-50-30+ # Ethionamide D03-50-30-10 # Iproniazid D03-50-30-20 # Isoniazid D03-50-30-30+ # Methaniazide D03-50-30-30-10 # Nialamide D03-50-30-40 # Protionamide D03-50-30-50 # Pyridoxic Acid D03-50-30-60 # Isonipecotic Acids D03-50-40+ # Diphenoxylate D03-50-40-10 # Metopimazine D03-50-40-20 # Pethidine D03-50-40-30+ # Trimeperidine D03-50-40-30-10 # Phenoperidine D03-50-40-40 # Pirinitramide D03-50-40-50 # Nicotinic Acids D03-50-50+ # Arecoline D03-50-50-10 # Clonixin D03-50-50-20+ # Flunixin D03-50-50-20-10 # Etazolate D03-50-50-30 # Hepronicate D03-50-50-40 # Inositol Nicotinate D03-50-50-50 # Niacin D03-50-50-60 # Nicametate D03-50-50-70 # Niceritrol D03-50-50-80 # Nicomol D03-50-50-90 # Nicotinamide D03-50-50-100+ # 6-Aminonicotinamide D03-50-50-100-10 # Motesanib D03-50-50-100-20 # Nicaraven D03-50-50-100-30 # Nicorandil D03-50-50-100-40 # Nifenazone D03-50-50-100-50 # Nikethamide D03-50-50-100-60 # Sorafenib D03-50-50-100-70 # Niflumic Acid D03-50-50-110 # Pipemidic Acid D03-50-50-120 # Piromidic Acid D03-50-50-130 # Tazarotene D03-50-50-140 # Xantinol Nicotinate D03-50-50-150 # Nipecotic Acids D03-50-60+ # Tiagabine D03-50-60-10 # Orotic Acid D03-50-70 # Picolinic Acids D03-50-80+ # Fusaric Acid D03-50-80-10 # Lazabemide D03-50-80-20 # Picloram D03-50-80-30 # Streptonigrin D03-50-80-40 # Pipecolic Acids D03-50-90+ # Argatroban D03-50-90-10 # Selfotel D03-50-90-20 # Xanthurenates D03-50-100+ Kynurenic Acid D03-50-100-10 # Mesulfen D03-60 # Plerixafor D03-70 # * 複素環式化合物(縮合環) D03-80+ 複素環式化合物(三環) D03-80-10+ Acridines D03-80-10-10+ ― D03 - 5 ― 医学中央雑誌刊行会・医学用語シソーラス 第9版( 2019) カテゴリー別リスト Acridones D03-80-10-10-10+
Recommended publications
  • Methods for Predicting the Survival Time of Patients Suffering from a Lung Cancer
    THETWO TORTOITUUSN 20180252720A1ULLUM HOLATIN ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 / 0252720 A1 DIEU -NOSJEAN et al. (43 ) Pub. Date : Sep . 6 , 2018 (54 ) METHODS FOR PREDICTING THE Publication Classification SURVIVAL TIME OF PATIENTS SUFFERING (51 ) Int . Ci. FROM A LUNG CANCER GOIN 33 /574 ( 2006 .01 ) (71 ) Applicants : INSERM (INSTITUT NATIONAL ( 52 ) U . S . CI. DE LA SANTE ET DE LA CPC .. GOIN 33 /57423 (2013 . 01) ; GOIN 2800/ 52 RECHERCHE MEDICALE ) , Paris ( 2013 . 01 ) (FR ) ; UNIVERSITE PARIS DESCARTES , Paris ( FR ) ; SORBONNE UNIVERSITE , Paris (57 ) ABSTRACT (FR ) ; UNIVERSITE PARIS DIDEROT - PARIS 7 , Paris ( FR ) ; The present invention relates to methods for predicting the ASSISTANCE survival time of patients suffering from a lung cancer . In PUBLIQUE -HOPITAUX DE PARIS particular , the present invention relates to a method for (ADHP ) , Paris (FR ) predicting the survival time of a subject suffering from a lung cancer comprising the steps of i) quantifying the ( 72 ) Inventors: Marie - Caroline DIEU - NOSJEAN , density of regulatory T ( Treg ) cells in a tumor tissue sample Paris (FR ) ; Wolf Herdman obtained from the subject, ii ) quantifying the density of one FRIDMAN , Paris ( FR ) ; Catherine further population of immune cells selected from the group SAUTES - FRIDMAN , Paris ( FR ) ; consisting of TLS -mature DC or TLS - B cells or Tconv cells , Priyanka DEVI, Paris (FR ) CD8 + T cells or CD8 + Granzyme - B + T cells in said tumor tissue sample , iii ) comparing the densities quantified at steps (21 ) Appl. No. : 15/ 754 , 640 i ) and ii ) with their corresponding predetermined reference values and iv ) concluding that the subject will have a short ( 22 ) PCT Filed : Aug .
    [Show full text]
  • Human Cytogenetics Prenatal Diagnostics
    Cytogenetics Human Cytogenetics Prenatal Diagnostics Optimized Medium for Culture and Genetic Analysis of Human Amniotic Fluid Cells BIOAMF-1 and Chorionic Villi ( CV ) Samples Basal Medium and Supplement Chromosome Karyotyping was first developed in the BIOAMF-1 is designed for the primary culture of field of Cytogenetics. human amniotic fluid cells and chorionic villi (CV) The basic principle of the method is the preparation samples in both open (5% CO2) and closed systems. of chromosomes for microscopic observation by The medium allows rapid growth of amniocytes or arresting cell mitosis at metaphase with colchicine and treating the cells with a hypotonic solution. This chorionic villi for use in karyotyping. is followed by regular or fluorescent staining of the No supplementation with serum or serum- chromosomes, which are then tested with the aid of a substitutes is necessary. microscope and computer programs to arrange and The medium consists of two components: basal identify the chromosomes for the presence of genetic medium and frozen supplements. abnormalities. In principle, this method enables the identification Instructions for Use of any abnormality - excess chromosomes or For the preparation of 500ml complete medium, use chromosome deficiency, broken chromosomes, 01-190-1A with 01-192-1E. or excess genetic material (as a result of a For the preparation of 100ml complete medium, use recombination process). 01-190-1B with 01-192-1D. Clinical cytogenetics laboratories use this method Thaw the BIOAMF-1 Supplement by swirling in a with amniotic fluid, chorionic villi, blood cells, skin cells, and so on, which can be cell cultured to obtain 37ºC water bath, and transfer the contents to the mitotic cells.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Lonidamine Induces Apoptosis in Drug-Resistant Cells Independently of the P53 Gene
    Lonidamine induces apoptosis in drug-resistant cells independently of the p53 gene. D Del Bufalo, … , A Sacchi, G Zupi J Clin Invest. 1996;98(5):1165-1173. https://doi.org/10.1172/JCI118900. Research Article Lonidamine, a dichlorinated derivative of indazole-3-carboxylic acid, was shown to play a significant role in reversing or overcoming multidrug resistance. Here, we show that exposure to 50 microg/ml of lonidamine induces apoptosis in adriamycin and nitrosourea-resistant cells (MCF-7 ADR(r) human breast cancer cell line, and LB9 glioblastoma multiform cell line), as demonstrated by sub-G1 peaks in DNA content histograms, condensation of nuclear chromatin, and internucleosomal DNA fragmentation. Moreover, we find that apoptosis is preceded by accumulation of the cells in the G0/G1 phase of the cell cycle. Interestingly, lonidamine fails to activate the apoptotic program in the corresponding sensitive parental cell lines (ADR-sensitive MCF-7 WT, and nitrosourea-sensitive LI cells) even after long exposure times. The evaluation of bcl-2 protein expression suggests that this different effect of lonidamine treatment in drug-resistant and -sensitive cell lines might not simply be due to dissimilar expression levels of bcl-2 protein. To determine whether the lonidamine-induced apoptosis is mediated by p53 protein, we used cells lacking endogenous p53 and overexpressing either wild-type p53 or dominant-negative p53 mutant. We find that apoptosis by lonidamine is independent of the p53 gene. Find the latest version: https://jci.me/118900/pdf
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Phenotype Microarrays Panels PM-M1 to PM-M14
    Phenotype MicroArrays™ Panels PM-M1 to PM-M14 for Phenotypic Characterization of Mammalian Cells Assays: Energy Metabolism Pathways Ion and Hormone Effects on Cells Sensitivity to Anti-Cancer Agents and for Optimizing Culture Conditions for Mammalian Cells PRODUCT DESCRIPTIONS AND INSTRUCTIONS FOR USE PM-M1 Cat. #13101 PM-M2 Cat. #13102 PM-M3 Cat. #13103 PM-M4 Cat. #13104 PM-M5 Cat. #13105 PM-M6 Cat. #13106 PM-M7 Cat. #13107 PM-M8 Cat. #13108 PM-M11 Cat. #13111 PM-M12 Cat. #13112 PM-M13 Cat. #13113 PM-M14 Cat. #13114 © 2016 Biolog, Inc. All rights reserved Printed in the United States of America 00P 134 Rev F February 2020 - 1 - CONTENTS I. Introduction ...................................................................................................... 2 a. Overview ................................................................................................... 2 b. Background ............................................................................................... 2 c. Uses ........................................................................................................... 2 d. Advantages ................................................................................................ 3 II. Product Description, PM-M1 to M4 ................................................................ 3 III. Protocols, PM-M1 to M4 ................................................................................. 7 a. Materials Required .................................................................................... 7 b. Determination
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Unlicensed Medicines List for Suffolk D&T
    Unlicensed Medicines & Unlicensed Uses Doctors can prescribe unlicensed medicines, or licensed medicines for unlicensed uses (off-label/off license prescribing). In these situations the doctor is legally responsible for the medicine. They may be called upon to justify their actions in the event of an adverse reaction. Doctors are expected to take “reasonable care” in common law, and to act in a way which is consistent with the practice of a responsible body of their peers of similar professional standing. The General Medical Council guidance on Good Practice in Prescribing Medicines (January 2013) gives the following information for doctors (http://www.gmc-uk.org/guidance/ethical_guidance/prescriptions_faqs.asp) Prescribing unlicensed medicines You can prescribe unlicensed medicines but, if you decide to do so, you must: 1. Be satisfied that an alternative, licensed medicine would not meet the patient's needs. 2. Be satisfied that there is a sufficient evidence base and/or experience of using the medicine to demonstrate its safety and efficacy. 3. Take responsibility for prescribing the unlicensed medicine and for overseeing the patient's care, including monitoring and any follow up treatment. 4. Record the medicine prescribed and, where you are not following common practice, the reasons for choosing this medicine in the patient's notes. Prescribing medicines for use outside the terms of their licence (off-label) 1. You may prescribe medicines for purposes for which they are not licensed. Although there are a number of circumstances in which this may arise, it is likely to occur most frequently in prescribing for children. Currently pharmaceutical companies do not usually test their medicines on children and as a consequence, cannot apply to license their medicines for use in the treatment of children.
    [Show full text]
  • Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance
    cells Review Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance Ronay Cetin 1,† , Eva Quandt 2,† and Manuel Kaulich 1,3,4,* 1 Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany; [email protected] 2 Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; [email protected] 3 Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany 4 Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany * Correspondence: [email protected]; Tel.: +49-(0)-69-6301-5450 † These authors contributed equally to this work. Abstract: Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation. Citation: Cetin, R.; Quandt, E.; Kaulich, M. Functional Genomics Keywords: chemotherapy resistance; cancer and drug vulnerabilities; functional genomics; RNAi Approaches to Elucidate Vulnerabilities of Intrinsic and and CRISPR screens Acquired Chemotherapy Resistance.
    [Show full text]
  • Computational Drug Target Screening Through Protein Interaction Profiles
    www.nature.com/scientificreports OPEN Computational Drug Target Screening through Protein Interaction Profiles Received: 27 June 2016 Santiago Vilar1,2, Elías Quezada3, Eugenio Uriarte2, Stefano Costanzi4, Fernanda Borges3, Accepted: 24 October 2016 Dolores Viña5 & George Hripcsak1 Published: 15 November 2016 The development of computational methods to discover novel drug-target interactions on a large scale is of great interest. We propose a new method for virtual screening based on protein interaction profile similarity to discover new targets for molecules, including existing drugs. We calculated Target Interaction Profile Fingerprints (TIPFs) based on ChEMBL database to evaluate drug similarity and generated new putative compound-target candidates from the non-intersecting targets in each pair of compounds. A set of drugs was further studied in monoamine oxidase B (MAO-B) and cyclooxygenase-1 (COX-1) enzyme through molecular docking and experimental assays. The drug ethoxzolamide and the natural compound piperlongumine, present in Piper longum L, showed hMAO-B activity with IC50 values of 25 and 65 μM respectively. Five candidates, including lapatinib, SB-202190, RO-316233, GW786460X and indirubin-3′-monoxime were tested against human COX-1. Compounds SB-202190 and RO-316233 showed a IC50 in hCOX-1 of 24 and 25 μM respectively (similar range as potent inhibitors such as diclofenac and indomethacin in the same experimental conditions). Lapatinib and indirubin- 3′-monoxime showed moderate hCOX-1 activity (19.5% and 28% of enzyme inhibition at 25 μM respectively). Our modeling constitutes a multi-target predictor for large scale virtual screening with potential in lead discovery, repositioning and drug safety. Discovery of new targets for molecules is of great interest in drug design and development1,2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]