Gc/Ms Assays for Abused Drugs in Body Fluids

Total Page:16

File Type:pdf, Size:1020Kb

Gc/Ms Assays for Abused Drugs in Body Fluids GC/MS ASSAYS FOR ABUSED DRUGS IN BODY FLUIDS U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alchol, Drug Abuse, and Mental Health Administration GC/MS Assays for Abused Drugs in Body Fluids Rodger L. Foltz, Ph.D. Center for Human Toxicology University of Utah Salt Lake City, Utah 64112 Allison F. Fentiman, Jr., Ph.D. Ruth B. Foltz Battelle Columbus Laboratories Columbus, Ohio 43201 NIDA Research Monograph 32 August 1980 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse Division of Research 5600 Fishers Lane Rockville, Maryland 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 The NIDA Research Monograph series is prepared by the Division of Research of the National Institute on Drug Abuse. Its primary objective is to provide critical reviews of research problem areas and techniques, the content of state-of-the- art conferences, integrative research reviews and significant original research. Its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisory Board Avram Goldstein, M.D. Addiction Research Foundation Palo Alto, California Jerome Jaffe, M.D. College of Physicians and Surgeons Columbia University, New York Reese T. Jones, M.D. Langley Porter Neuropsychiatric Institute University of California San Francisco, California William McGlothlin, Ph.D. Department of Psychology, UCLA Los Angeles, California Jack Mendelson, M.D. Alchol and Drug Abuse Research Center Harvard Medical School Mclean Hospital Belmont, Massachusetts Helen Nowlis, Ph.D. Office of Drug Education, DHHS Washington, D.C. Lee Robins, Ph.D. Washington University School of Medicine St. Louis, Missouri NIDA Research Monograph series William Pollin, M.D. DIRECTOR, NIDA Marvin Snyder, Ph.D. DIRECTOR, DIVISION OF RESEARCH, NIDA Robert C. Petersen, Ph.D. EDITOR-IN-CHIEF Eleanor W. Waldrop MANAGING EDITOR Parklawn Building, 5600 Fishers Lane, Rockville, Maryland 20857 GC/MS Assays for Abused Drugs in Body Fluids ACKNOWLEDGMENTS Support for the development and evaluation of the GC/MS assays described in this monograph and the preparation of the manuscript was provided by the National Institute on Drug Abuse, contracts ADM 45-74-140, HSM 42-72-183, and 271-77-3419 to Battelle Columbus Laboratories, and contract 271-80-3719 to the Center for Human Toxicology, and by the Insurance Institute for Highway Safety, proj- ect 6762 at the Center for Human Toxicology. The United States Government does not endorse or favor any specific commercial product, commodity, or supplier. Trade or proprietary names and names of suppliers appearing in this publication are used only because they are considered essential in the context of the information presented. Library of Congress catalog card number 80-600143 DHHS publication number (ADM) 80-1014 Printed 1980 NIDA Research Monographs are indexed in the Index Medicus. They are selectively included in the coverage of Biosciences Information Service, Chemical Abstracts, Current Contents, Psychological Abstracts, and Psychopharmocology abstracts. iv Foreword This monograph presents a collection of methods for the quanti- tative analysis of several important drugs of abuse by the tech- nique of gas chromatography-mass spectrometry (GC/MS). The ma- terial is arranged textbook fashion, by chapters on specific drugs, to assist researchers in setting up GC/MS assay procedures in their own laboratories. These assays are particularly suited to basic studies on the pharmacology and pharmacokinetics of drugs of abuse. Forensic toxicology, which sometimes requires the highly sensitive and specific sample analysis provided by GC/MS, is another important area of application. Even when an alternate method such as immu- noassay is available for such analyses, GC/MS is often the only means of providing a confirmation assay. The sensitivity and specificity of GC/MS are especially critical to studies on the impact of drugs on traffic safety. In addition, demand for leg- islation relating to drugs and highway safety is increasing, and enforcement of such laws will necessitate appropriate sample assays. The unique characteristics of the GC/MS analytical method make it the only means of determining drug levels under certain circum- stances. The inherent complexity of the technique, however, often dissuades investigators from embarking on studies that involve its use. At a time when basic questions underlying drug abuse call for increasingly sophisticated methods of data acquisition, this monograph should provide the information needed to make one of these procedures easier to establish and to encourage new areas of research. Marvin Snyder, Ph. D. Director, Division of Research National Institute on Drug Abuse v Preface Soon after the establishment of the National Institute on Drug Abuse in 1974, the development of an analytical program empha- sizing gas chromatography/mass spectrometry (GC/MS) was initiated. A major part of this program was directed at the development, testing, and eventual publication of GC/MS methods suitable for a number of abused drugs of interest to this Institute. It was felt that by making available carefully described quantitative pro- cedures for these drugs, more researchers would be encouraged to move into several critically important areas of investigation. A major segment of this development and testing program was carried out by Battelle (Columbus Laboratories and at the Center for Human Toxicology at the University of Utah. These GC/MS methods empha- size chemical ionization techniques which frequently offer signifi- cant advantages in sensitivity and specificity over techniques of electron impact ionization. Each of the techniques described in this monograph has been field tested by one or more independent laboratories in order to optimize both the procedure itself and the clarity of its presentation. This field testing was carried out by Battelle and consisted of sending the participating laboratories a series of known standard samples along with the information brochures included herein as chapters. The participating laboratories then set up the method in their own facilities and analyzed the spiked samples. Problems with either the instructional material or the method allowed Battelle to make many improvements to insure the highest probability of an inexperienced lab’s success with one of these assays. This monograph represents the combined efforts of many individuals and has evolved to its present state over several years. We hope that it will save research investigators valuable time in estab- lishing quantitative essays of these drugs in their own laboratories. The basic principles of GC/MS quantitative analysis as presented here should be useful in setting up procedures for other drugs as well. Richard L. Hawks , Ph.D. Division of Research vii Contents Foreword . v Marvin Snyder Preface . vii Richard L. Hawks Chapter 1 Introduction . 1 Chapter 2 Experimental Considerations and Operations Common to All of the Assays . 5 Chapter 3 Phencyclidine(PCP) . .25 Chapter 4 Methaqualone . .39 Chapter 5 Methadone . .51 Chapter 6 -Tetrahydrocannabinol (THC) and Two of Its Metabolites, 11-Hydroxy- -THC and 11-Nor-9-Carboxy- -THC . .62 Chapter 7 Cocaine and Its Major Metabolite, Benzoylecgonine . 90 Chapter 8 Morphine . , . 110 Chapter 9 Diazepam and Its Major Metabolite, N-Desmethyl- diazepam . 128 Chapter 10 Amphetamine . 150 Chapter 11 Methamphetamine . 165 Chapter 12 2,5-Dimethoxy-4-Methylamphetamine (DOM) . 179 Chapter 13 Mescaline . , . 189 ix Chapter 1 Introduction The combination of gas chromatography and mass spectrometry (GC/MS) became widely recognized in the 1960’s as the most sensitive and versatile tool available for the identification of volatile or- ganic compounds. It was not until the 1970’s, however, and the development of selected ion monitoring techniques, that the poten- tial of GC/MS for quantitative analysis was generally appreciated. It now seems certain that the quantitative measurement of specific organic compounds in complex mixtures will become the major appli- cation of GC/MS simply because its sensitivity, accuracy, and ver- satility are unequalled by any other technique, including the popu- lar immunological assays. The rapid increase in the use of GC/MS has occurred in spite of several severe limitations and deterrents. The major limitation is that for a compound to be analyzed by GC/MS it must have suf- ficient volatility and thermostability to pass through the gas chro- matographic column intact in the vapor state, or be capable of con- version to a derivative which can do so; this requirement prohibits GC/MS analysis for 80 to 90 percent of known organic compounds. Fortunately, this is not a serious problem for the toxicologist, because most drugs and their metabolites are among the structures which can be analyzed by GC/MS. More serious deterrents to wider use of GC/MS in toxicological and clinical laboratories are the expense of GC/MS instrumentation and the relatively high level of training and skill required to make effective use of these instru- ments. Although the former is unlikely to be reduced in the fu- ture, the latter will undoubtedly become less burdensome as the reliability of GC/MS instrumentation is improved and its design simplified. The purpose of this monograph is to assemble, within a single vol- ume, detailed descriptions of GC/MS
Recommended publications
  • Download Full Article As
    Article Alkaloids Detection in Commonly Found Medicinal Plants with Marquis Reagent Daniel Alejandro Ocampo-Bustos1 and María Elena Cano-Ruiz1 1 Tecnológico de Monterrey High School, Cuernavaca, Mexico. SUMMARY identity of social groups. Many of the medicinal plants have Alkaloids are a class of nitrogenous organic their healing properties known by empirical use through time, compounds of plant origin that may have important but these medicinal plants may contain active ingredients physiological actions on humans. They include many with tested pharmacological properties. One possibility is that drugs and poisons, but some alkaloids in low doses some of the active ingredients in medicinal plants belong to the have health benefits as well. Traditional medicinal group of alkaloids, which can be determined by a colorimetric plants may contain alkaloids as active ingredients, chemical reaction with the Marquis reagent. The reagent is but this is not well-understood. The Marquis reagent dripped onto the substance being tested, and if an alkaloid exists as a simple qualitative colorimetric method is present, a color change appears (5). The Marquis reagent to determine the presence of alkaloids in medicinal is traditionally composed of a mixture of formaldehyde and plants. The Marquis reagent test was assayed in concentrated sulfuric acid. medicinal plants by first optimizing the formulation Originally, the Marquis reagent was used for testing of the reagent using poppy seeds and lavender as many different alkaloids, and the results from those studies the positive and negative controls. Then using the were the base for developing the color scales that are optimized formulation of Marquis reagent in the extracts of 11 medicinal plants with known claims of used as a reference to determine the specific alkaloid health benefits.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,980,319 B2 Park Et Al
    US00898O319B2 (12) United States Patent (10) Patent No.: US 8,980,319 B2 Park et al. (45) Date of Patent: *Mar. 17, 2015 (54) METHODS OF PRODUCING STABILIZED A613 L/445 (2006.01) SOLID DOSAGE PHARMACEUTICAL A613 L/47 (2006.01) COMPOSITIONS CONTAINING A6II 45/06 (2006.01) MORPHINANS A63/67 (2006.01) (52) U.S. Cl. (71) Applicant: Mallinckrodt LLC, Hazelwood, MO CPC ............. A6 IK3I/485 (2013.01); A61 K9/1652 (US) (2013.01); A61 K9/2031 (2013.01); A61 K 9/2081 (2013.01); A61 K9/2086 (2013.01); (72) Inventors: Jae Han Park, Olivette, MO (US); A6IK9/2095 (2013.01); A61 K9/5042 Tiffani Eisenhauer, Columbia, IL (US); (2013.01); A61 K3I/4355 (2013.01); A61 K Spainty,S.Isna Gupta, F11llsborough, 31/4375A6 (2013.01); IK3I/445 gets (2013.01); it' A6 (2013.01); IK3I/47 Stephen Overholt, Middlesex, NJ (US) (2013.01); A61K 45/06 (2013.01); A61 K 9/2013 (2013.01); A61 K9/209 (2013.01); (73) Assignee: Mallinckrodt LLC, Hazelwood, MO A6 IK3I/167 (2013.01) (US) USPC ........... 424/472: 424/465; 424/468; 424/490; c - r - 514/282; 514/289 (*) Notice: Subject to any disclaimer, the term of this (58) Field of Classification Search patent is extended or adjusted under 35 N U.S.C. 154(b)b) by 0 daysyS. Seeone application file for complete search history. This patent is Subject to a terminal dis claimer. (56) References Cited (21) Appl. No.: 14/092.375 U.S. PATENT DOCUMENTS (22) Filed: Nov. 27, 2013 2008, 0026052 A1 ck 1/2008 Schoenhard .................
    [Show full text]
  • Chlorpromazine(BAN, Rinn)
    Carpipramine Hydrochloride/Chlorpromazine 969 2. Stubb S, et al. Fixed drug eruptions: 77 cases from 1981 to 1985. Chlorpromazine Embonate (BANM, rINNM) mazine. Photosensitivity reactions are more common Br J Dermatol 1989; 120: 583. 3. Roujeau J-C, et al. Medication use and the risk of Stevens-John- Chlorpromazine, Embonate de; Chlorpromazine Pamoate; with chlorpromazine than with other antipsychotics. son syndrome or toxic epidermal necrolysis. N Engl J Med 1995; Chlorpromazini Embonas; Embonato de clorpromazina. Haematological disorders, including haemolytic anae- 333: 1600–7. Хлорпромазина Эмбонат mia, aplastic anaemia, thrombocytopenic purpura, Porphyria. Chlormezanone has been associated with acute at- (C H ClN S) ,C H O = 1026.1. tacks of porphyria and is considered unsafe in porphyric patients. 17 19 2 2 23 16 6 eosinophilia, and a potentially fatal agranulocytosis ATC — N05AA01. have occasionally been reported; they may be manifes- Preparations ATC Vet — QN05AA01. tations of a hypersensitivity reaction. Most cases of Proprietary Preparations (details are given in Part 3) agranulocytosis have occurred within 4 to 10 weeks of Chile: Cardiosedantol; Restoril†. Chlorpromazine Hydrochloride (BANM, rINNM) starting treatment, and symptoms such as sore throat or Multi-ingredient: Chile: Adalgen†; Calmosedan; Diapam; Dioran†; Dol- Aminazine; Chloropromazyny chlorowodorek; Chlorpromazin nix; Dolonase; Dolorelax†; Fibrorelax; Mesolona†; Multisedil; Neo Butar- fever should be watched for and white cell counts insti- trol; Promidan; Sedantol; Sedilit; Silrelax†; Sin-Algin; Hong Kong: Parazone; hydrochlorid; Chlorpromazine, chlorhydrate de; Chlorpromazini S.Afr.: Myoflex. hydrochloridum; Chlorpromazino hidrochloridas; Hidrocloruro tuted should they appear. Mild leucopenia has been de clorpromazina; Klooripromatsiinihydrokloridi; Klorpromazin stated to occur in up to 30% of patients on prolonged Hidroklorür; Klórpromazin-hidroklorid; Klorpromazinhydro- high dosage.
    [Show full text]
  • 2020 Equine Prohibited Substances List CONTROLLED MEDICATION
    2020 Equine Prohibited Substances List CONTROLLED MEDICATION . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s). Prohibited Substances that are identified as Specified Substances in the List below should not in any way be considered less important or less dangerous than other Prohibited Substances. Rather, they are simply substances which are more likely to have been ingested by Horses for a purpose other than the enhancement of sport performance, for example, through a contaminated food substance. SUBSTANCE ACTIVITY 17-Alpha-Hydroxy Progesterone FEMALES Hormone Acepromazine Sedative Acetazolamide Carbonic Anhydrase Inhibitor Acetominophen (Paracetamol) Analgesic Adrenaline Stimulant Adrenocorticotropic hormone (ACTH) Hormone Aformoterol Bronchodilator Albuterol (Salbutamol) Bronchodilator Alpha-Casozepine Sedative Altrenogest (in males and geldings) Oestrus suppression Amantadine Dopaminergic Ambroxol Mucolytic Amcinonide Corticosteroid Aminocaproic acid Haemostatic (anti-fibrinolytic) Aminophylline Bronchodilator Aminorex Parasympathomimetic Amiodarone Anti-arrhythmic Antazoline Antihistamine Atipamezole Alpha adrenergic antagonist Atropine (Specified Substance) Anticholinergic Azatadine Antihistamine Beclomethasone Corticosteroid Benzocaine (Ethyl Aminobenzoate) Local anaesthetic Benzquinamide Antihistamine Benzydamine Non-steroidal anti-inflammatory drug Betamethasone Corticosteroid Bethanechol Parasympathetic agonist Brinzolamide Diuretic Bromhexine Mucolytic Bromodiphenhydramine
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Papaver Somniferum
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Papaver somniferum Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (+)-LAUDANIDINE Fruit -- 0 (+)-RETICULINE Fruit -- 0 (+)-RETICULINE Latex Exudate -- 0 (-)-ALPHA-NARCOTINE Inflorescence -- 0 (-)-NARCOTOLINE Inflorescence -- 0 (-)-SCOULERINE Latex Exudate -- 0 (-)-SCOULERINE Plant -- 0 10-HYDROXYCODEINE Latex Exudate -- 0 10-NONACOSANOL Latex Exudate Chemical Constituents of Oriental Herbs (3 diff. books) 0 13-OXOCRYPTOPINE Plant -- 0 16-HYDROXYTHEBAINE Plant -- 0 20-HYDROXY- Fruit 36.0 -- TRICOSANYLCYCLOHEXA NE 0 4-HYDROXY-BENZOIC- Pericarp -- ACID 0 4-METHYL-NONACOSANE Fruit 3.2 -- 0 5'-O- Plant -- DEMETHYLNARCOTINE 0 5-HYDROXY-3,7- Latex Exudate -- DIMETHOXYPHENANTHRE NE 0 6- Plant -- ACTEONLYDIHYDROSANG UINARINE 0 6-METHYL-CODEINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 6-METHYL-CODEINE Fruit -- 0 ACONITASE Latex Exudate -- 32 AESCULETIN Pericarp -- 3 ALANINE Seed 11780.0 12637.0 0.5273634907250652 -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 ALKALOIDS Latex Exudate 50000.0 250000.0 ANON. 1948-1976. The Wealth of India raw materials. Publications and Information Directorate, CSIR, New Delhi. 11 volumes. 5 ALLOCRYPTOPINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 15 ALPHA-LINOLENIC-ACID Seed 1400.0 5564.0 -0.22115561650586155 -- 2 ALPHA-NARCOTINE Plant Jeffery B. Harborne and H. Baxter, eds. 1983. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London. 791 pp. 17 APOMORPHINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 APOREINE Fruit -- 0 ARABINOSE Fruit ANON.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Zine and Some Related Phenothiazines in Reducing the Rigidity of the Decerebrate Cat and in Some Other Central Actions by Elizabeth M
    Br. J. Pharmac. Chemother. (1967), 29, 400-416. A COMPARISON OF THE EFFECTS OF CHLORPROMA- ZINE AND SOME RELATED PHENOTHIAZINES IN REDUCING THE RIGIDITY OF THE DECEREBRATE CAT AND IN SOME OTHER CENTRAL ACTIONS BY ELIZABETH M. KEARY AND D. R. MAXWELL From the Research Laboratories, May & Baker Ltd., Dagenham, Essex (Received March 2, 1967) One of the many interesting properties of chlorpromazine is its ability to reduce skeletal muscle tone in experimental animals (Dasgupta & Werner, 1955; Sheatz, 1955). Henatsch & Ingvar (1956) and Busch, Henatsch & Schulte (1960) have shown that small doses of chlorpromazine abolish the rigidity of the intercollicular decerebrate cat and reduce the discharge of -y-motoneurones. These authors also found that much larger doses of chlorpromazine were required to depress the rigidity of the decerebrate cat prepared by the ischaemic method of Pollock & Davis (1930). It was suggested that chlorpromazine had a selective depressant effect on the y- as opposed to the a-moto- neurones at a supraspinal level. Chlorpromazine has been reputed to be of some value in reducing the muscle tonus in patients with spasticity (Basmajian & Szatmari, 1955). Although the actions of chlorpromazine in reducing skeletal muscle tone and in affecting spinal reflexes have been extensively studied, little is known about the activity of related phenothiazine derivatives in this context. It thus appeared interesting to compare chlorpromazine with some related phenothiazine derivatives for their ability to reduce rigidity of the intercollicular decerebrate cat with the object of seeing to what extent there was correlation between activity in reducing skeletal muscle tone and other pharmacological actions.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • This List Was Originally Published in Virginia Register Volume 8, Issue 18
    In accordance with 6 VAC 40-30, the Regulations for the Approval of Field Tests for Detection of Drugs, and under the authority of the Code of Virginia, the following field tests for detection of drugs are approved field tests: O D V INCORPORATED 13386 INTERNATIONAL PARKWAY JACKSONVILLE, FLORIDA 32218-2383 ODV NarcoPouch Drug or Drug Type: Manufacturer’s Field Test: Heroin 902 – Marquis Reagent Amphetamine 902 – Marquis Reagent Methamphetamine 902 – Marquis Reagent 3,4–Methylenedioxymethamphetamine (MDMA) 902 – Marquis Reagent Cocaine Hydrochloride 904 or 904B – Cocaine HCl and Base Reagent Cocaine Base 904 or 904B – Cocaine HCl and Base Reagent Barbiturates 905 – Dille-Koppanyi Reagent Lysergic Acid Diethylamide (LSD) 907 – Ehrlich’s (Modified) Reagent Marijuana 908 – Duquenois – Levine Reagent Hashish Oil 908 – Duquenois – Levine Reagent Marijuana 909 – K N Reagent Hashish Oil 909 – K N Reagent Phencyclidine (PCP) 914 – PCP Methaqualone Reagent Heroin 922 – Opiates Reagent Methamphetamine 923 – Methamphetamine/Ecstasy Reagent 3,4–Methylenedioxymethamphetamine (MDMA) 923 – Methamphetamine/Ecstasy Reagent Heroin 924 – Mecke’s (Modified) Reagent Diazepam 925 – Valium/Ketamine Reagent Ketamine 925 – Valium/Ketamine Reagent Ephedrine 927 – Ephedrine Reagent gamma – Hydroxybutyrate (GHB) 928 – GHB Reagent ODV NarcoTest Drug or Drug Type: Manufacturer’s Field Test: Heroin 7602 – Marquis Reagent Amphetamine 7602 – Marquis Reagent Methamphetamine 7602 – Marquis Reagent 3,4–Methylenedioxymethamphetamine (MDMA) 7602 – Marquis Reagent Barbiturates
    [Show full text]
  • Thesis-1982D-K435m.Pdf
    METAL ION - DRUG INTERACTIONS IN SOLUTIONS By NITAYA KETKEAW "' Bachelor of Science Chiengmai University Chiengmai, Thailand 1975 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillments of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1982 l~1<:.~is \q 1i ~D K l.~:lj M ~·IV' ----- METAL IN SOLUTIONS Thesis Approved: Dean of the Graduate College ii 1155645 ,. ACKNOWLEDGMENTS I wish first to express my gratitude to Dr. Neil Purdie for his patience, understanding and invaluable guidance through out this study, and for his assistance in the preparation of this manuscript. Appreciation is expressed to Dr. Larry E. Halliburton for the use of ESR facilities and his assistance in obtaining the ESR spectra, and to Dr. Tom E. Moore, Dr. Elizabeth M. Holt, Dr. J. Paul Devlin and Dr. Liao Ta-Hsiu for serving on the committee. Special thanks are extended to my fellow graduate students and to the faculty and staff of the Chemistry Department for their encouragement. I would also like to express gratitude to my parents and my husband for their patience and unfailing encouragement throughout the long years. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION • 1 Statement of the Problem 8 II. BACKGROUND AND THEORY 10 Circular Dichroism . • • 10 Origin of Light Polarization . • • • 10 Electron Spin Resonance . • • • 19 Hyperfine Structure .• . .. • 24 g - Factor • • • . • . • . • • • 30 Interpretation of ESR Spectra 31 III. EXPERIMENTAL . 33 Instrumental . • . • • • . • 33 Chemicals . • • . • • • • . • . 35 Experimental Procudures . • • • • • 36 CD and UV-Visible Measurements • 36 Acid and Base Titrations of Morphine in Aqueous Solution . • • • . • 36 Metal Ion - Drug Interactions in Aqueous Solution • • • 36 Reactions of Drugs with Con- centrated Sulfuric Acid • 37 Pseudomorphine Solutions 37 ESR Measurements • .
    [Show full text]