TSMC Integrated Fan-Out (Info) Package Apple A10

Total Page:16

File Type:pdf, Size:1020Kb

TSMC Integrated Fan-Out (Info) Package Apple A10 Electronic Costing & Technology Experts 21 rue la Nouë Bras de Fer 44200 Nantes – France Phone : +33 (0) 240 180 916 email : [email protected] www.systemplus.fr September 2016 – Version 1 – Written by Stéphane ELISABETH DISCLAIMER : System Plus Consulting provides cost studies based on its knowledge of the manufacturing and selling prices of electronic components and systems. The given values are realistic estimates which do not bind System Plus Consulting nor the manufacturers quoted in the report. System Plus Consulting is in no case responsible for the consequences related to the use which is made of the contents of this report. The quoted trademarks are property of their owners. © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 1 Return to TOC Glossary 1. Overview / Introduction 4 – A10 Die Analysis 57 – Executive Summary – A10 Die View, Dimensions & Marking – Reverse Costing Methodology – A10 Die Cross-Section – A10 Die Process Characteristics 2. Company Profile 7 – Comparison with previous generation 65 – Apple Inc. – A9 vs. A10 PoP – Apple Series Application processor – A9 vs. A10 Process – Fan-Out Packaging – TSMC Port-Folio 4. Manufacturing Process Flow 70 – TSMC inFO packaging – Chip Fabrication Unit – Packaging Fabrication Unit 3. Physical Analysis 15 – inFO Reconstitution Flow – Physical Analysis Methodology – iPhone 7 Plus Teardown 17 5. Cost Analysis 81 – A10 Die removal – Synthesis of the cost analysis – A10 Package-on-Package Analysis 23 – Main steps of economic analysis – A10 Package View, Dimensions – Yields Hypotheses – A10 Package XRay View – Die Cost Analysis 86 – A10 Package Opening – Wafer Cost – A10 Package Marking – Die Cost – A10 Package Cross-Section – inFO Packaging Cost Analysis 90 – A10 Package Cross-Section – Adhesive & Passivation – Packaging Wafer Cost – A10 package cross-Section - TIVs – Packaging Cost per process Steps – A10 package cross-Section – Solder Balls – Component Cost – A10 package cross-Section – RDL – Land-Side Decoupling Capacitor Analysis 48 6. Estimated Price Analysis 99 – Package View, Dimensions & Marking – Manufacturer Financial Ratios – LSC Package integration – Cross-Section – Estimated Selling Price – Package-on-Package Comparison 52 – Packages Comparison Overview Contact 102 – Packages LSC comparison – Package comparison cross-section © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 2 A10 Application Processor Packaging – TSMC’s inFO Return to TOC • This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of iPhone 7 Plus Application Processors, the Apple A10 . • Located on the main board, the application processor (AP) (bottom package) and the DRAM Chip (top package) are in Package-on-Package (PoP) configuration. Depending on the version (iPhone 7 or iPhone 7 Plus), the DRAM memory has different space management. • The Apple A10 is a Wafer-Level Package (WLP) using TSMC’s packaging technology with copper pillar as Through inFO Via (TIV) to replace the well-known Through Molded Via (TMV) technology. With this new technology, Apple marked a huge breaking point with the old traditional PoP found in the previous generations of his APs. In this report, we will show the differences and the innovations of this package: Copper Pillars, Redistribution layer, patent identification, silicon high density capacitor integration, … The detailed comparison with the Exynos 8 and the Snapdragon 820 will give the pro and the cons of the inFO technology compared to PoP packaging used in the market. • Thanks to this inFO process, Apple is able to propose a very thin package on package, with a high number of I/O pads and better thermal management. The result is a very cost-effective component that can compete with any well-known PoP. In the report, the cost comparison is also including in order to highlight the difference. • This report also includes a technical comparison with previous Apple AP, the A9. © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 3 A10 Application Processor Packaging – TSMC’s inFO Return to TOC Wifi FEM and antenna Apple iPhone 7 Plus Main Board (Top view) modules A10 processor & nd baseband processor 2 part of RF components & RF transceiver st 1 part of RF components Power managements IC & NFC Apple iPhone 7 Plus Main Board (Top view) Apple iPhone 7 Plus Main Board (Bottom view) © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 4 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 5 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 6 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 7 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 8 A10 Application Processor Packaging – TSMC’s inFO Return to TOC Package RDL – Cross-Section – SEM View Package RDL – Cross-Section – SEM View © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 9 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 10 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 11 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 12 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 13 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 14 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 15 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 16 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 17 A10 Application Processor Packaging – TSMC’s inFO Return to TOC © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 18 A10 Application Processor Packaging – TSMC’s inFO Return to TOC Reverse costing analysis represents the best cost/price evaluation given the publically available data, and estimates completed by industry experts. Given the hypothesis presented in this analysis, the major sources of correction would lead to a +/- 30% correction on the manufacturing cost (if all parameters are cumulated). These results are open for discussion. We can reevaluate this circuit with your information. Please contact us: o Consulting and Specific Analysis – North America: Steve LaFerriere, Director of Northern America Business Development, Yole Inc. Email: [email protected] – Europe: Lizzie Levenez, Europe Middle East and Africa Business Development Manager, Yole Développement Email: [email protected] – Japan: Takashi Onozawa, General Manager, Yole Japan & President, Yole K.K. Email: [email protected] – RoW: Jean-Christophe Eloy, President & CEO, Yole Développement, Email: [email protected] o Report business – North America: Steve LaFerriere, Director of Northern America Business Development, Yole Inc. Email: [email protected] – Europe: Lizzie Levenez, Europe Middle East and Africa Business Development Manager, Yole Développement Email: [email protected] – Japan: Miho Ohtake, Japan Sales Manager, Yole K.K., Email: [email protected] – Greater China: Mavis Wang, Business Development Manager, Yole China - [email protected] – Rest of Asia: Takashi Onozawa, President & General Manager, Yole K.K., Email: [email protected] o Financial services – Jean-Christophe Eloy, CEO & President, Email: [email protected] o General: Email: [email protected] © 2016 by SYSTEM PLUS CONSULTING, all rights reserved. 19 A10 Application Processor Packaging – TSMC’s inFO TSMC Integrated Fan-Out (inFO) Package in Apple’s A10 Application Processor Reverse engineering and costing of the new inFO packaging technology from TSMC used for Apple’s latest A10 application processor, found in the iPhone 7 and 7 Plus Each year, Apple integrates new technology and innovations into Title: Apple A10 inFO-PoP the iPhone. This year, with the Pages: 100 iPhone 7, Apple is the first to bring out Package on Package (PoP) Date: October 2016 Wafer-Level Packaging (WLP) at the Format: PDF & Excel file consumer scale. For its new application processor (AP), the A10, Price: Full report: EUR 3,490 Apple has decided to use TSMC’s new integrated Fan-Out PoP (inFO- PoP) packaging technology. COMPLETE TEARDOWN Located on the main board, the application processor (bottom package) WITH: and the DRAM Chip (top package) are in PoP configuration. Depending on • Detailed photos the version (iPhone 7 or iPhone 7 Plus), the DRAM memory has different space management. • Precise measurements The Apple A10 is a wafer-level package using TSMC’s packaging • Material analysis technology with copper pillar Through inFO Vias (TIVs) to replace the well- • Manufacturing process known Through Molded Via (TMV) technology. With this new technology, flow Apple has made a huge break from traditional PoP packaging found in • Supply-chain evaluation previous AP generations. In this report, we show the differences and the innovations of this package, including copper pillars, the redistribution • Manufacturing cost layer, and silicon high density capacitor integration. A detailed comparison analysis will give the pros and cons of inFO
Recommended publications
  • Second Generation of TSMC's Integrated Fan-Out (Info
    Apple A11 Application Processor Second generation of TSMC’s inFO packaging PACKAGING report by Stéphane ELISABETH February 2018 – version 1 ©2017 by System Plus Consulting | Apple A11 with TSMC inFO Packaging 1 Table of Contents Overview / Introduction 4 o Application Processor 87 o Executive Summary Die Views, Marking & Dimensions o Reverse Costing Methodology Die Cross-Section Company Profile 8 Die Process Characteristics o Apple Physical Comparison 94 o Apple APE Portfolio o Apple’s APE Series: A9, A10, A11 o Fan-Out Packaging o APE’s PoP Technology: Standard PoP, MCeP, inFO o TSMC inFO Technology Manufacturing Process 98 o Apple iPhone 8 & X Teardown o APE Die Front-End Process & Fabrication Unit o Fan-Out Market o Deep Trench Capacitor Die Front-End Process Flow Physical Analysis 22 & Fabrication Unit o Summary of the Physical Analysis 23 o inFO Packaging Process Flow & Fabrication unit o Packaging 25 Cost Analysis 117 Package Views, Marking & Dimensions o Summary of the cost analysis 118 o Yields Explanation & Hypotheses 119 Package X-Ray o APE die 122 Package RDL Deprocessing Wafer & Die Front-End Cost Package Memory: X-Ray view & Opening Preparation Wafer Cost Package Opening o LSC die 126 Board Cross-Section: Via Frame, PCB, Dimensions Wafer & Die Front-End Cost Package Cross-Section: TiV, Adhesive, RDLs Frond-End cost per Process Steps Package Process o inFO Packaging 131 Summary of Physical Data inFO Wafer Cost o Land-Side Capacitor 65 inFO Front-End Cost per Process Steps Die Views & Dimensions Component Cost Die Deprocessing & Delayering Company services 136 Die Process Die Cross-Section Die Process Characteristics ©2017 by System Plus Consulting | Apple A11 with TSMC inFO Packaging 2 Executive Summary Overview / Introduction o Executive Summary • This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of o Reverse Costing Methodology the Apple A11.
    [Show full text]
  • Apple U1 Ultra Wideband (UWB) Analysis
    Apple U1 Ultra Wideband (UWB) Analysis Product Brief – October 2019 techinsights.com All content © 2019. TechInsights Inc. All rights reserved. GLOBAL LEADER IN IP & TECHNOLOGY INTELLIGENCE By revealing the innovation others can’t inside advanced technology products, we prove patent value and drive the best Intellectual Property (IP) and technology investment decisions Technology Intelligence Intellectual Property Services We help decision makers in semiconductor, system, financial, We help IP Professionals in global technology companies, and communication service provider companies: licensing entities and legal firms to: • Discover what products are winning in the highest- • Build higher quality, more effective patents growth markets and why • Identify patents of value and gather evidence of use to • Spot or anticipate disruptive events, including the demonstrate this value entrance of new players • Obtain accurate data for planning a potential defensive • Understand state-of-the-art technology strategy or assertion case through independent, objective analysis • Make better portfolio management decisions to invest, • Make better, faster product decisions with greater abandon, acquire or divest confidence • Understand their competition, identify strategic partners, • Understand product costs and bill of materials acquisition targets and business threats 2 All content © 2019. TechInsights Inc. All rights reserved. TechInsights has been publishing technology analysis for 30 years, enabling our customers to advance their intellectual property
    [Show full text]
  • Operational Highlights
    078 079 5.1 Business Activities 5.2 Technology Leadership ●Developed integrated fan-out on substrate (InFO-oS) Gen-3, which provides more chip partition integration with larger 5.1.1 Business Scope 5.2.1 R&D Organization and Investment package size and higher bandwidth As the founder and a leader of the dedicated semiconductor foundry segment, TSMC provides a full range of integrated In 2020, TSMC continued to invest in research and ●Expanded 12-inch Bipolar-CMOS-DMOS (BCD) technology semiconductor foundry services, including the most advanced process technologies, leading specialty technologies, the most development, with total R&D expenditures amounting to 8.2% portfolio on 90nm, 55nm and 22nm, targeting a variety of comprehensive design ecosystem support, excellent manufacturing productivity and quality, advanced mask technologies, and of revenue, a level that equals or exceeds the R&D investment fast-growing applications of mobile power management ICs 3DFabricTM advanced packaging and silicon stacking technologies, to meet a growing variety of customer needs. The Company of many other leading high-tech companies. with various levels of integration strives to provide the best overall value to its customers and views customer success as TSMC’s own success. As a result, TSMC has ●Achieved technical qualification of 28nm eFlash for gained customer trust from around the world and has experienced strong growth and success of its own. Faced with the increasingly difficult challenge to continue automobile electronics and micro controller units (MCU) extending Moore’s Law, which calls for the doubling of applications 5.1.2 Customer Applications semiconductor computing power every two years, TSMC has ●Began production of 28nm resistive random access memory focused its R&D efforts on offering customers first-to-market, (RRAM) as a low-cost solution for the price sensitive IoT TSMC manufactured 11,617 different products for 510 customers in 2020.
    [Show full text]
  • TSMC Investement in Arizona
    Michael R. Splinter Chairman of the Board Senator Robert Menendez Senator Lisa A. Murkowski Honorary Co-Chair Honorary Co-Chair Rupert J. Hammond-Chambers President INTERNAL COMMENTARY: THE STRATEGIC IMPORTANCE OF THE TSMC ARIZONA INVESTMENT MAY 15, 2020 RUPERT J. HAMMOND-CHAMBERS PRESIDENT Taiwan Semiconductor Manufacturing Company (TSMC) is the world’s largest contract chip manufacturer. A key link in the global technology supply chain, it is the most important company most people have never heard of. TSMC, based in Taiwan, is now doubling down on its relationship with the United States in a big way. On Friday, May 15, 2020 TSMC announced the most important technology news of the year; the company committed to building a cutting-edge 5nm fabrication plant (fab) to produce semiconductor chips in Arizona. Its U.S. customers for the chips produced here will not only include U.S. tech companies, but will also include the Pentagon, defense contractors, and the national security community. The visionary founder of TSMC, Morris Chang, imagined a world where fabless semiconductor companies would absorb the financial burden of designing chips, but would outsource their actual production to his TSMC. His vision created a monster that dominates the sector he created - the foundry manufacturing sector – making almost 50% of all chips produced by foundries globally. TSMC’s state-of-the-art process technology and CAPEX investment of approximately US$15 billion/year ensures that it has few, if any, peers. Successive Taiwan governments have continued to nurture TSMC through prioritized access to land, power, and water, thereby allowing it to serve as the beating heart of Taiwan’s technology miracle.
    [Show full text]
  • Semiconductors: a Changing of the Guard
    Semiconductors: A Changing of the Guard Richard Spalton MA, CFA Investment Manager Semiconductors: A Changing of the Guard “While an early chip from the 1970s could fit thousands of micrometre-sized transistors, today’s most advanced chips are a complex web of billions of transistors, the smallest of which are just 10nm. To get some idea of how small that is: your fingernails grew 10nm in the time it took to read the previous sentence.”1 Background One of the key enablers of technological progress has been the constantly shrinking size of the transistors on semiconductor chips. Smaller transistors mean that the same number of computations can be completed faster, more efficiently and at lower cost. This concept was famously outlined by Gordon Moore, co-founder of Intel, who in 1965 wrote what became known as Moore’s Law. The manufacturing process for a particular size of transistor is called a process node. Shifting to a new node is highly complex and involves significant capital expenditure. In July 2020 Intel announced that their transition to the 7 nanometre node was running a year behind schedule. This delay will have a significant impact on Intel and its competitors. This announcement marks a changing of the guard in the semiconductor market, with leadership shifting away from Intel towards Taiwan Semiconductor Manufacturing Company (TSMC) and Samsung Electronics. Scale Matters Assessing the future prospects of a company requires an assessment of its industry. Manufacturing semiconductors is highly capital intensive – the industry spends USD 100bn per annum on capital expenditure. Companies also need to spend substantial amounts on R&D because each process node is more complex than the last.
    [Show full text]
  • Contrails Ejoa Summer 2018
    EJOA EDITION SETTING THE STANDARD CONTROLLING USE TAX ON YOUR AIRCRAFT PURCHASES FOR INNOVATION THE PRIVATE JET MAGAZINE SUMMER 2018 DRONES AND HURRICANES SOARING INTO HURRICANE SEASON SERIOUS ASTUNT STICK AND RUDDER FLYING S E T T I N G THE STANDARD A REVIEW OF THE LAST DECADE Embraer 18Q3.indd 1 8/5/18 9:17 PM NEW Now there’s a Bose aviation headset that’s just your type. AIRCRAFT SALES & ACQUISITIONS AEROCOR has quickly become the world's number one VLJ broker, with more listings and more completed transactions than the competition. Our success is driven by product specialization and direct access to the largest pool of light turbine buyers. Find out why buyers and sellers are switching to AEROCOR. UNPARALLELED Introducing the new Bose ProFlight Aviation ACCURATE INTEGRITY PRICING EXPOSURE Headset with features designed for airline and corporate aircraft fl ight decks. Proprietary market Honest & fair Strategic partnership tracking & representation with Aerista, the world's Designed for the professional pilot, the Bose ProFlight is the industry’s valuation tools largest Cirrus dealer smallest, quietest and most comfortable active noise cancelling communication headset and includes three user selectable levels of noise cancellation, a unique tap control for talk-through communication and quick release side-swappable boom microphone and down cable. CALL US TODAY! All engineered into a form factor unlike any other headset – a highly PROFLIGHT AVIATION HEADSET stable, in-ear confi guration without the usual intrusive deep-insert eartips. In-ear confi guration for pilots The new Bose ProFlight is FAA TSO and EASA E/TSO-C139a certifi ed.
    [Show full text]
  • Needham's Semiconductor Expertise What Does The
    The Growth Factor - Commentary by John Barr, [email protected] June 23, 2021 - Vol. 32 The Opportunity We See in Semiconductor Manufacturing (6 minute read) 2020 brought an unprecedented economic shutdown. The pandemic accelerated trends that we have been focused on for a long me; we call this the Great Digital and Life Sciences Acceleration. I would like to zero in on the opportunities in semiconductor manufacturing. I’ve long felt the semiconductor industry has moved beyond a cyclical, PC-driven industry to one of strategic importance. The confluence of manufacturing semiconductors for automotive, data center, machine learning, and remote work electronic systems; remaking the supply chain, and securing supplies for geopolitical needs have created a positive scenario for semiconductor manufacturing technology companies. Needham's Semiconductor Expertise Needham Funds have been owners of semiconductor manufacturing companies since our start in 1996. Needham Funds are an affiliate of Needham & Company, which has completed over 580 underwritings and M&A transactions for semiconductor companies since 1985. Addionally, prior to my Wall Street career, I spent 12 years in sales and markeng for Electronic Design Automaon companies, selling to semiconductor and electronic systems companies. I also spent 8 years as a sell-side senior research analyst following semiconductor design and technical soware companies. I served on the board of directors of venture capital-backed Coventor, Inc., which provided simulaon and modeling soluons for semiconductor process technology and was sold to Lam Research, Inc. in 2017. What Does the Opportunity in Semiconductor Manufacturing Mean for Needham Funds? Growth in advanced semiconductor manufacturing has been a dominant investment theme for Needham Funds for over 10 years.
    [Show full text]
  • Apple Iphone SE 16GB 4-Inch Powerhouse Smartphone!
    Apple iPhone SE 16GB 4-inch Powerhouse Smartphone! Apple makes the compact smartphone king again with its new iPhone SE. A 4-inch powerhouse that easily fits in your pocket yet delivers the same high speeds and stunning graphics as the iPhone 6s. It’s designed with an improved battery, a rear-facing 12- megapixel iSight camera with Focus Pixels, True Tone Flash and Live Photos, and FaceTime HD camera with Retina Flash for gorgeous selfies. Same powerful chip as iPhone 6s Engineered to bring desktop-class architecture to the iPhone, the 64-bit A9 chip delivers incredible performance and console-standard graphics in apps and games. Overall computing performance is improved by up to 70% over the previous generation, while graphics are as much as 90% faster, ensuring you get a more reactive, immersive experience. Built within the A9 chip is the M9 motion coprocessor, which is connected to the accelerometer, compass and gyroscope to improve city navigation and fitness tracking. It also works to strengthen your connection to Siri, so you don’t have to hold up your iPhone to ask your questions. Capture amazing photos and 4K videos Take sharp, detailed photos and brilliant 4K video with the new 12 megapixel iSight camera. It’s faster, with improved tone mapping and image stabilisation, so you can just tap the shutter and let iPhone do the rest. And with four times the resolution of 1080p Full HD video, the detail you can capture in videos is simply extraordinary. Live Photos Don’t just capture a still; capture the moment with Live Photos.
    [Show full text]
  • Annual Report 2002 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD
    TSE: 2330 NYSE: TSM Taiwan Semiconductor Manufacturing Company, Ltd. Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Manufacturing Company, Taiwan Annual Report 2002 121, Park Ave. 3, Science-Based Industrial Park, Hsin-Chu, Taiwan 300-77, R.O.C. Tel: 886-3-578-0221 Fax: 886-3-578-1546 http://www.tsmc.com Taiwan Semiconductor Manufacturing Company, Ltd. Annual Report 2002 • Taiwan Stock Exchange Market Observation Post System: http://mops.tse.com.tw • TSMC annual report is available at http://www.tsmc.com/english/tsmcinfo/c0203.htm Morris Chang, Chairman Printed on March 12, 2003 TABLE OF CONTENTS 3 LETTER TO THE SHAREHOLDERS 7 A BRIEF INTRODUCTION TO TSMC 7 Company Profile 8 Market Overview MAJOR FACILITIES TSMC SPOKESPERSON 9 Organization Corporate Headquarters & FAB 2, FAB 5 Name: Harvey Chang 18 Capital & Shares 121, Park Ave. 3 Title: Senior Vice President & CFO 22 Issuance of Corporate Bonds Science-Based Industrial Park Tel: 886-3-563-6688 Fax: 886-3-563-7000 23 Preferred Shares Hsin-Chu, Taiwan 300-77, R.O.C. Email: [email protected] 24 Issuance of American Depositary Shares Tel: 886-3-578-0221 Fax: 886-3-578-1546 26 Status of Employee Stock Option Plan (ESOP) Acting Spokesperson 26 Status of Mergers and Acquisitions FAB 3 Name: J.H. Tzeng 26 Corporate Governance 9, Creation Rd. 1 Title: Public Relations Department Manager 30 Social Responsibility Information Science-Based Industrial Park Tel: 886-3-563-6688 Fax: 886-3-567-0121 Hsin-Chu, Taiwan 300-77, R.O.C. Email: [email protected] 32 OPERATIONAL HIGHLIGHTS Tel: 886-3-578-1688 Fax: 886-3-578-1548 32 Business Activities AUDITORS 34 Customers FAB 6 Company: T N SOONG & CO 34 Raw Material Supply 1, Nan-Ke North Rd.
    [Show full text]
  • Sigurnost Apple Platforme Proljeće 2020
    Sigurnost Apple platforme Proljeće 2020. Sadržaj Uvod u sigurnost Apple platforme 5 Obveza za sigurnost 6 Sigurnost hardvera i biometrija 8 Pregled sigurnosti hardvera 8 Secure Enclave 9 Dedicirani AES modul 10 Touch ID i Face ID 12 Hardversko isključivanje mikrofona u Macu i iPadu 17 Express Card kartice sa štednjom energije u iPhoneu 17 Sigurnost sustava 18 Pregled sigurnosti sustava 18 Generiranje nasumičnih brojeva 18 Sigurno podizanje sustava 19 Sigurnosna ažuriranja softvera 28 Integritet sustava OS u sustavu iOS i iPadOS 29 Integritet sustava OS u sustavu macOS 31 Sigurnost sustava watchOS 37 Enkripcija i zaštita podataka 40 Pregled enkripcije i zaštite podataka 40 Kako Apple štiti osobne podatke korisnika 40 Uloga Apple sustava datoteka 41 Zaštita podataka u sustavu iOS i iPadOS 42 Enkripcija u sustavu macOS 48 Šifre i lozinke 54 Autentikacija i digitalno potpisivanje 56 Zbirke ključeva 58 Sigurnost Apple platforme 2 Sigurnost aplikacija 61 Pregled sigurnosti aplikacija 61 Sigurnost aplikacija u sustavu iOS i iPadOS 62 Sigurnost aplikacija u sustavu macOS 67 Sigurnosne značajke u aplikaciji Bilješke 70 Sigurnosne značajke u aplikaciji Prečaci 71 Sigurnost usluga 72 Pregled sigurnosti usluga 72 Apple ID i Upravljani Apple ID 72 iCloud 74 Upravljanje šiframa i lozinkama 78 Apple Pay 85 iMessage 97 Dopisivanje s poduzećem 100 FaceTime 101 Pronalaženje 101 Kontinuitet 105 Sigurnost mreže 109 Pregled sigurnosti mreže 109 Sigurnost TLS mreže 109 Virtualne privatne mreže (VPN-ovi) 110 Sigurnost Wi-Fi mreže 111 Sigurnost Bluetootha 114
    [Show full text]
  • Apple A11 Bionic
    Apple A11 The Apple A11 Bionic is a 64-bit ARM-based system on a chip (SoC), designed by Apple Inc.[6] and manufactured by TSMC.[1] It first appeared in the iPhone 8, iPhone 8 Plus, and iPhone Apple A11 Bionic X which were introduced on September 12, 2017.[6] It has two high-performance cores which are 25% faster than the Apple A10 and four high-efficiency cores which are up to 70% faster than the energy-efficient cores in the A10.[6][7] Contents Design Neural Engine Products that include the Apple A11 Bionic See also References Produced From Design September 12, 2017 to [1][6][4] The A11 features an Apple-designed 64-bit ARMv8-A six-core CPU, with two high-performance cores at 2.39 GHz, called Monsoon, and four energy-efficient cores, called Mistral. present The A11 uses a new second-generation performance controller, which permits the A11 to use all six cores simultaneously,[8] unlike its predecessor the A10. The A11 also integrates an Apple- Designed by Apple Inc. designed three-core graphics processing unit (GPU) with 30% faster graphics performance than the A10.[6] Embedded in the A11 is the M11 motion coprocessor.[9] The A11 includes a new Common [1] image processor which supports computational photography functions such as lighting estimation, wide color capture, and advanced pixel processing.[6] TSMC manufacturer(s) [1] [7] 2 [10] The A11 is manufactured by TSMC using a 10 nm FinFET process and contains 4.3 billion transistors on a die 87.66 mm in size, 30% smaller than the A10.
    [Show full text]
  • Cache Attacks on the Apple A10 Fusion Soc
    iTimed: Cache Attacks on the Apple A10 Fusion SoC Gregor Haas, Seetal Potluri, and Aydin Aysu Department of Electrical and Computer Engineering North Carolina State University fghaas, spotlur2, [email protected] Abstract—This paper proposes the first cache timing side- devices which cannot be obtained legally [8]. Additionally, channel attack on one of Apple’s mobile devices. Utilizing Apple ensures that applications cannot arbitrarily interact a recent, permanent exploit named checkm8, we reverse- with other applications or the operating system by strictly engineered Apple’s BootROM and created a powerful toolkit for running arbitrary hardware security experiments on Ap- enforcing the allowed inter-process communication (IPC) ple’s in-house designed ARM systems-on-a-chip (SoC). Using interfaces. As shown in the literature [9], even determining this toolkit, we then implement an access-driven cache timing which interfaces exist is a challenging research problem. attack (in the style of PRIME+PROBE) as a proof-of-concept In the context of hardware security research on iPhones, illustrator. useful resources such as documentation or development The advanced hardware control enabled by our toolkit allowed us to reverse-engineer key microarchitectural details tools are even rarer than for software security research. For of the Apple A10 Fusion’s memory hierarchy. We find that the one, Apple does not release any detailed documentation SoC employs a randomized cache-line replacement policy as for their in-house designed hardware modules. Some in- well as a hardware-based L1 prefetcher. We propose statistical formation can be found in Apple’s patents for a dynamic innovations which specifically account for these hardware voltage frequency modulation (DVFM) module [10], secure structures and thus further the state-of-the-art in cache timing attacks.
    [Show full text]