Plants and Environment Investigation Report

Total Page:16

File Type:pdf, Size:1020Kb

Plants and Environment Investigation Report Plants and environment investigation report Redback spider establishment prevented The Ministry for Primary Industries’ (MPI) Incursion Investigation (Plants & Environment) and Plant Health Environment Laboratory A single redback spider (Latrodectus teams investigate and diagnose suspected exotic pests and diseases hasseltii) was found and captured from in the plant and environment sectors. Investigators and scientists the underside of a barbecue imported are based in Auckland and Christchurch. These teams provide field among personal effects when a family was relocating from Australia. MPI investigation, diagnostic testing and technical expertise with regard to Quarantine Officers searched the new pests and diseases affecting plants and the environment. They also property and re-inspected imported have surveillance and response functions and carry out research and goods for further redback spiders but development to support surveillance and incursion response activities. none were found. Risk items were treated with permethrin insecticide previously. Although no adult borer MPI as a trap-jaw ant (Odontomachus as a precaution. were initially found, dead beetles were sp. cf. simillimus), an exotic species not Staff at a Transitional Facility contacted later found in the drawers after domestic currently present in New Zealand, but MPI when a live female redback spider insecticide was applied. Specimens were known to have a painful bite. The ant and egg sac were found on a wooden identified as Lyctus brunneus, commonly was also determined to be a de-alate pallet holding a consignment of known as the powder post beetle, a queen, meaning it had already mated, crumb rubber recently imported from common wood borer worldwide that is which increased the biosecurity risk. Australia. The egg sac contained dozens already established in New Zealand. MPI visited the site and determined of spiderlings that dispersed when that the facility staff had recently Active wood-boring insect damage disturbed. The apparently sole adult killed two similar ants. There was no was seen in a buffet unit imported female was sprayed with domestic fly obvious association to link the ant to from Java and purchased in 2012. The spray and killed, and the spiderlings were any particular imported goods, but a owner contacted first the importer (via also sprayed. MPI staff visited the facility search of the area where containers of the retailer), then MPI, by which time after notification but no more spiders bananas were stored resulted in two the cupboard had been collected for were found. The surrounding area was further ant finds. These were identified as fumigation by the importer. However, live treated with permethrin insecticide Iridomyrmex sp. and Nylanderia sp., both adult beetles were subsequently found in as a precaution. established in New Zealand and not a another cupboard drawer and identified biosecurity risk. However, ant specialists as Minthea rugicollis (Coleoptera: Establishment of wood were contracted to survey the risk area Bostrichidae), a species not present in borers prevented and eradicate any exotic ant colonies New Zealand. The importer confirmed Forty bamboo panels in a consignment found. Visual searching found no exotic that five other units were imported in the imported from Indonesia were thought ants. Similarly, pitfall traps left for seven same consignment. Of these, two had to possibly contain live borer larvae. days caught no ants. Pitfall traps were been sold to persons unknown. Only Apparently fresh borer frass and exit considered the appropriate surveillance one of the remaining three units was holes were seen after the panels had option as Odontomachus is a predatory able to be traced. It showed no sign of been in storage for 11 months, but were species and less likely to be attracted infestation, and the owner promised to thought to have been absent when the to the food baits typically used. As no notify MPI if they saw any signs of borer. panels were imported. Borer galleries and further specimens of this species were Fumigation and inspection of two units dead borer beetle adults were found when found it was concluded that the collected addressed the known risk. No further one panel was destructively sampled. specimen was most likely a solitary action was feasible. The beetles were identified as Dinoderus individual not associated with a colony. nitidus (a species not present in New Establishment of high-risk Mango leaf hopper found Zealand) and Tribolium castaneum ants prevented (present in NZ). Although consignment A live insect found in a new caravan Specimens were sent to MPI after live information showed the goods had been imported from Australia the previous ants were found in a shed, near furniture treated with methyl bromide prior to month was sent to MPI and identified that had recently been shipped back from shipment, the goods were transported as a mango hopper, Idioscopus nitidulus Australia. However, these were identified to an appropriate facility and fumigated (Hemiptera: Cicadellidae), a major as Monomorium antarcticum, a common again as a precaution. mango pest present in Australia but not native species and no biosecurity risk. New Zealand. This solitary hitchhiker Borer frass was noticed in the drawers of An unusual-looking ant found at a was considered to pose a negligible two bedside tables purchased together Transitional Facility was identified by biosecurity risk owing to the virtual with a TV cabinet about six months absence of fruiting mango trees in NZ. 74 Surveillance 42 (3) 2015 Potato wart disease Illegal seed import Hairy beetle excluded ruled out intercepted A recently purchased packet of dried Potato samples from Invercargill were An English gardening magazine posted pig-trotter dog food was found to sent to Environment Southland because to New Zealand was found to contain be contaminated with live insects. they were suspected to be infected four packets of seeds (sweetcorn, Specimens were identified as Dermestes with potato wart fungus (Synchytrium courgette, squash and mixed lettuce). frischii (Coleoptera: Dermestidae), endobioticum), an unwanted organism This method of seed importation by- dermestid or hairy beetle, a serious that causes a serious potato disease passed MPI’s border system, including pest considered to be absent from overseas. Samples provided to MPI were the inspection process. The magazine New Zealand and known to feed determined to have powdery scab caused purchaser destroyed the seeds by burning primarily on products of animal origin. by Spongospora subterranea, a species and advised MPI that the magazine Investigation revealed that the pig already present in New Zealand. stated the next issue would include eight trotters were distributed to New Zealand more packets of seeds. MPI sent an email retail stores by an Australian company. New palm mealybug to the UK publisher, who immediately Importation of the consignment included ruled out replied and advised there were only three a declaration that the goods had been An entomologist found an unusual New Zealand subscribers, and they had heat-treated (cooked), so it is likely that mealybug on an exotic palm growing in updated their instructions to the printer the infestation occurred afterwards. In the grounds of the Auckland University to ensure no further seeds would be all, 307 packets were traced, immediately Law School and considered it a possible sent to the NZ subscribers. While the withdrawn from sale and subsequently new to New Zealand species. However, publisher was unwilling to provide the frozen to mitigate the biosecurity risk. specimens received by MPI were NZ subscribers’ contact details, they The Australian supplier was advised that identified as Laminicoccus flandersi offered to write to them with a message the product quality was unacceptable, (Hemiptera: Pseudococcidae), a species of our choice. A suitable message was and MPI border intelligence was already present in New Zealand. It provided and subsequently received by notified to ensure increased compliance is currently unclear whether this the New Zealand subscriber. This was monitoring of this entry pathway. notification represents a new host considered a good outcome when dealing Causal agent of brome grass association record. with an international company to address a biosecurity risk pathway. disease reclassified Insects found in fish feed The causative agent of a brome grass A consignment of imported fish feed Rose seeds ordered on-line from a disease (bacterial wilt of turfgrass) was found to be infested with insects, New Zealand website arrived with has been renamed after analysis using despite having a zoosanitary certificate documentation showing they had been modern molecular diagnostics. What stating that it had been heat-treated sourced directly from China, labelled was previously known as Xanthomonas (to 80°C) before shipping. Methyl as “jewellery” and imported as a “gift”. campestris pv. graminis has been bromide fumigation was arranged for Noting that this appeared to be an reclassified as X. bromi. This bacterium the consignment, and the insects were attempt to avoid New Zealand border was first identified in New Zealand in subsequently identified as Ctenolepisma scrutiny, the buyer contacted MPI. 1978 as X. campestris pv. graminis on longicaudata (a silverfish species already Investigation revealed that the seeds brome grasses, based on International established in New Zealand) and were only temporarily advertised on the Collection
Recommended publications
  • The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
    The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con­ considered.
    [Show full text]
  • PLANT of the MONTH – LITSEA CALICARIS Plant of the Month for September Is Litsea Calicaris (Mangeao, Tangeao)
    E-newsletter: No 106. September 2012 Deadline for next issue: Monday 15 October 2012 President’s message The New Zealand Plant Conservation Network will be 10 years old in April! It is hard to believe that the Network will have been in place for a decade, but so much has been achieved in that time. Around 2,000 people read this newsletter and our website use is huge. The 7,300 plant species pages, 23,000 plant images, 1.4 million plant distribution records and other website information/features provide a very valuable plant conservation resource that did not exist before the Network began. We will be celebrating this birthday with a conference, so book that May date in your diaries (see later in this newsletter). Also in this edition, are details of another major celebration (75 years this time!)— Auckland Botanical Society’s Diamond Jubilee Celebrations will feature a programme of lectures and a celebration dinner in late October (see Events for more information). This month, we have an article about a fantastic find on Banks Peninsula. Pittosporm obcordatum has been rediscovered after 170 years—well done Melissa. Two new features have been added to the website; an illustrated glossary and species pages of all of New Zealand’s marine algae, so check them out. We are calling for nominations for the NZPCN Plant Conservation Awards. I’m sure that you know of a person, group, council, school or nursery that you could nominate for the great work they are doing for plant conservation. Finally, look out for our AGM invitation in the next newsletter.
    [Show full text]
  • The Vegetation of Whale Island. Part II. Species List of Vascular Plants, By
    Tane (1971) 17:39-46 39 THE VEGETATION OF WHALE ISLAND PART II. SPECIES LIST OF VASCULAR PLANTS by B.S. Parris* ABSTRACT A list of vascular plants found on Whale Island is presented together with the abundance of each species and the plant communities in which it occurs. INTRODUCTION This list was drawn up during the July visit and only a few species were added on the August visit. Further collections at more favourable seasons would probably add more species, particularly adventive annuals, to the list. The plant communities are as in Parris et al. (1971). Specimens of most species are lodged in the herbarium of the Auckland Institute and Museum. Nomenclature is as follows: indigenous dicotyledons and ferns, 'Flora of New Zealand' Vol. 1 by H.H. Allan (1961); indigenous monocotyledons, 'Flora of New Zealand' Vol. 2 by L.B. Moore and E. Edgar (1970); adventive species, 'Handbook of the Naturalised flora of New Zealand' by H.H. Allan (1941) and 'A Guide to the Identification of Weeds and Clovers' by A.J. Healy (1970). LIST OF SPECIES * adventive species Psilopsida Psilotum nudum locally abundant under kanuka, occurs under pohutukawa Lycopsida Lycopodium cernuum one locality Sulphur Valley L. varium Pa Hill Filicopsida Schizaeaceae Schizaea fistulosa Sulphur Valley Hymenophyllaceae Hymenophyllum sanguinolentum three localities, in forest Dicksoniaceae Dicksonia squarrosa local - forest and grassland * Plant Diseases Division, D.S.I.R. Auckland. 40 Cyatheaceae Cyathea dealbata common - forest; local - grassland C. medullaris common in forest & grassland Polypodiaceae Pyrrosia serpens abundant throughout Phymatodes diversifolium widespread but not common Thelypteridaceae Thelypteris pennigera local in forest Dennstaedtiaceae Hypolepis tenuifolia locally abundant, kanuka Pteridaceae Paesia scaberula common, more so than bracken Histiopteris incisa locally abundant, kanuka and grassland Pteridium aquilinum local, grassland Pteris tremula abundant throughout P.
    [Show full text]
  • Powderpost Beetles in Timber Protecting Timber, Buildings and Furniture
    Powderpost beetles in timber protecting timber, buildings and furniture Timber borers 1 Wood-boring insect pests that attack seasoned Biology and life cycle timber can cause significant, structural damage to property. Preventative measures are less Powderpost beetles are pests of the sapwood of expensive that treatment, so property owners need certain hardwood timber species. Species display to understand what to look out for as well as best- minor differences in appearance, habits and practice in timber management. longevity. The following describes the life cycle and habits of our most common lyctine species, Lyctus Powderpost beetles and anobiid beetles are the most brunneus. significant borer groups found in Queensland. After mating, the female beetle seeks a suitable Powderpost beetles belong to the subfamily Lyctinae place for egg-laying and bites the wood, leaving a in the family Bostrichidae. They are so named series of grooves on the surface. These tasting marks because their larvae can reduce susceptible timber to may serve to determine whether the timber contains a fine flour-like powder (Figure 1). starch, the essential larval dietary requirement, and they also expose wood pores for subsequent egg- laying. Using her egg-laying apparatus (ovipositor) she lays in the open pores of the sapwood. Each female may lay a total of 70 eggs, with a usual limit of 3 eggs in any pore. Figure 1. Larvae of powderpost beetles can reduce susceptible timber to a fine flour-like powder. Description Adults are up to 7 mm long, dark-brown, shiny, flattened, elongate insects (Figure 2). They have a distinct head and the terminal segments on their antennae have a clubbed appearance.
    [Show full text]
  • A Review of the Powder-Post Beetles of Thailand (Coleoptera: Bostrichidae)
    Tropical Natural History 11(2): 135-158, October 2011 ©2011 by Chulalongkorn University A Review of the Powder-Post Beetles of Thailand (Coleoptera: Bostrichidae) ROGER A. BEAVER1, WISUT SITTICHAYA2* AND LAN-YU LIU3 1161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, THAILAND 2Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Had Yai, Songkhla 90112, THAILAND 3National Central Library, 20 Zongshan S. Rd., Taipei 10001, TAIWAN * Corresponding author. E-mail: [email protected] Received: 25 April 2011; Accepted: 26 July 2011 ABSTRACT.– The present state of knowledge of the powder post beetles (Coleoptera: Bostrichidae) of Thailand is summarised to provide a basis for future studies of the fauna and its economic importance in forestry and agriculture, including stored products. We provide a checklist, including information on the local and world distribution, biology and taxonomy of these species. Sixty species are now known to occur in Thailand, of which the following twenty-two species are recorded here for the first time: Amphicerus caenophradoides (Lesne), Bostrychopsis parallela (Lesne), Calonistes antennalis Lesne, Dinoderopsis serriger Lesne, Dinoderus exilis Lesne, D. favosus Lesne, D. gardneri Lesne, Micrapate simplicipennis (Lesne), Octodesmus episternalis Lesne, O. parvulus (Lesne), Parabostrychus acuticollis Lesne, Paraxylion bifer (Lesne), Phonapate fimbriata Lesne, Sinoxylon parviclava Lesne, S. pygmaeum Lesne, S. tignarium Lesne, Trogoxylon punctipenne (Fauvel), Xylocis
    [Show full text]
  • NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 94 December 2008 New Zealand Botanical Society
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 94 December 2008 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Subscriptions The 2009 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2009 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the March 2009 issue is 25 February 2008. Please post contributions to: Melanie Newfield 17 Homebush Rd Khandallah Wellington Send email contributions to [email protected]. Files are preferably in MS Word (with the suffix “.doc” but not “.docx”), as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Graphics can be sent as TIF JPG, or BMP files. Alternatively photos or line drawings can be posted and will be returned if required.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 3 PARIS, 2017-03 General 2017/053 New data on quarantine pests and pests of the EPPO Alert List 2017/054 EPPO report on notifications of non-compliance 2017/055 EU Minor Uses Coordination Facility: a new Newsletter! Pests 2017/056 Aromia bungii found again in Bayern, Germany 2017/057 Gymnandrosoma aurantianum: addition to the EPPO Alert List 2017/058 First reports of Xylosandrus crassiusculus in Brazil, French Guiana and Guatemala Diseases 2017/059 First report of Thekopsora minima in the Netherlands 2017/060 First report of Thekopsora minima in Portugal 2017/061 Sirococcus tsugae found in Northern Ireland (GB) 2017/062 First report of Eutypella parasitica in Poland 2017/063 Eradication of Synchytrium endobioticum from Latvia 2017/064 First report of Diplocarpon mali in the Czech Republic 2017/065 First reports of a new bacterial leaf blight of rice caused by Pantoea ananatis and Pantoea stewartii in Benin and Togo 2017/066 First report of Grapevine pinot gris virus in Germany Invasive plants 2017/067 First report of Solidago altissima in Belgium 2017/068 First report of Buddleja madagascariensis in Italy 2017/069 Cabomba caroliniana found again in Belgium 2017/070 First report of Baccharis spicata in Portugal 2017/071 5th International Symposium: Weeds and Invasive Plants (Chios, GR, 2017-10-10/14) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2017 no.
    [Show full text]
  • Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................
    [Show full text]
  • A Survey of Beetles Damaging Commercially Impotrtant Stored Timber in Kerala
    KFRI Research Report 10 A SURVEY OF BEETLES DAMAGING COMMERCIALLY IMPOTRTANT STORED TIMBER IN KERALA George Mathew KERALA FOREST RESEARCH INSTITUTE PEECHI, THRISSUR June 1982 Pages:92 CONTENTS Page Abstract r.10.2 Index to insects and Timber species 91 r.10.8 I. Introduction r.10.3 II. Materials and Methods r.10.4 Ill. Resufts and Discussion 6 r.10.5 Part A. Insect borers of major timber species 6 Part B. Ctassification, biology ercd host range of borers 46 IV. Conclusions 86 r.10.6 V. References 88 r.10.7 Index to 92 ABSTRACT About 100 commercially important timber species are being extracted from the natural forests in Kerala and stored in depots. The stored timber is often attacked by borers belonging to the insect order Coleoptera. In the present survey, about 53 species of beetles were recorded as pests of one or more of 46 species of stored timber. These belong to the families, Cerambycidae, Bostrychidae, Lyctidae, Platypodidae, Scolytidae, Curculioni- dae and Anthribidae. The major cerambycid borers collected in this study were, Batocera rufomaculata (attacking Bombax ceiba, Ceiba pentandra, Manoifera indica and Syzygium cumini) ; Olenecamptus bilobus (attacking Artocarpus hirsutus and Lagerstroemia microcarpa) and Xystrocera globosa (attacking Albizia odoratissima). They generally attack the sapwood as well as heartwood of freshlv felled timber with intact bark. Borers belonging to the other families are small in size but often cause considerable economic loss. They generally attack the sapwood. Maximum damage is caused to the low density timbers having marked sapwood portion. Finished products such as match veneers, plywoods, packing case boards, brush-handles, bobbins, photo-frames.
    [Show full text]
  • Botanical Society of Otago Newsletter Number 33 August - Sept
    Botanical Society of Otago Newsletter Number 33 August - Sept. 2002 BSO Meetings and Field Trips 11 Sept, Wed 5.30 pm. Threatened plants of Otago. John Barkla, a botanist with the Otago Conservancy of DOC, will discuss the new system for classifying species according to the threat of extinction and how this applies to Otago's threatened plants. John will show slides of some of the most threatened plants and talk about the conservation programmes being implemented for them. Meet Zoology Annexe Seminar Room, Great King St, behind the car park between Dental School and Zoology. Be prompt or knock loudly, Drinks, chat & nibbles. 28 Sept, Sat. 1pm. Graham's Bush. Ralf Ohlemueller will take us to look at the native and exotic species richness of Graham's Bush. As one of a series of trips to significant remnants of indigenous forest in coastal Otago, this trip will focus on weed invasions in different parts of Graham's Bush, which is just above Sawyers Bay. We will be walking along a well- maintained track for 2-3 hours. Meet at 1pm, Botany Dept. car park, 464 Great King Street. 19 Oct, Sat. 10 am. Breathtaking Botanismg at Heyward Point with Robyn Bridges. We will visit the DoC Reserve, check out the seals at the point and amble round the cliffs to the glorious Kai Kai beach. Wind sculptured totara, Kowhai, lots of fili-ramulose species (once browsed by ratites?), caves, mussels if the tide is right, and a visit to a piece of priceless real estate. A good round trip of about 6 hours.
    [Show full text]
  • Botany of the Large Islands of the Eastern Bay of Islands, Northern New Zealand
    TANE 30,1984 BOTANY OF THE LARGE ISLANDS OF THE EASTERN BAY OF ISLANDS, NORTHERN NEW ZEALAND by R.E. Beever*, A.E. Eslert and A.E. Wright** * Plant Diseases Division, DSIR, Private Bag, Auckland t Botany Division, DSIR, Private Bag, Auckland ** Auckland Institute and Museum, Private Bag, Auckland SUMMARY The botanical features of the islands of Urupukapuka, Moturua, Motuarohia, Waewaetorea, Motukiekie and Okahu in the eastern Bay of Islands are described briefly. All have a long history of modification by man, first by the Maori and then by Europeans. The islands are now predominantly covered by grassland and Leptospermum scrubland with a coastal fringe dominated by pohutukawa (Metrosideros excelsa); on Motuarohia and Motukiekie substantial areas are planted with exotic conifers. A vascular plant species list is given for each island. A total of 208 indigenous species and 177 adventive species is recorded for the group as a whole. INTRODUCTION Botanical explorations of the Bay of Islands began when the Endeavour visited the region in November and December 1769. However, although Banks and Solander landed on both Motuarohia and Moturua and also visited the mainland, Banks was disappointed. He remarked of Motuarohia,of all the places I have landed in this was the only one which did not produce one new vegetable' (Beaglehole 1962). Nevertheless they found a total of 85 vascular plants (luring their stay (Hatch 1981) including the rare kakabeak (Clianthus puniceus) and the famous Cook's scurvy grass [Lepidium oleraceum) now also, unfortunately, rare. There is ample evidence from both Cook's and Banks' journals that the area was intensively populated by Maoris at the time of their visit.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS MEXICO January 2007 Forest Resources Development Service Working Paper FBS/24E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests – Mexico DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Mexico. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests – Mexico TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]