Estrogen Induces Shift in Abundances of Specific Groups of the Coral

Total Page:16

File Type:pdf, Size:1020Kb

Estrogen Induces Shift in Abundances of Specific Groups of the Coral www.nature.com/scientificreports OPEN Estrogen induces shift in abundances of specifc groups of the coral microbiome Caren L. S. Vilela1, Helena D. M. Villela1, Gustavo A. S. Duarte1, Erika P. Santoro1, Caio T. C. C. Rachid1 & Raquel S. Peixoto1,2* Synthetic estrogens such as ethinylestradiol (EE2) are persistent micropollutants that are not efectively removed from wastewater by conventional treatments. These contaminants are released into waterbodies, where they disrupt endocrine systems of organisms and cause harmful efects such as feminization, infertility, reproduction problems and genital malformations. The consequences of this pollution for key marine ecosystems such as coral reefs and their associated microbiomes are underexplored. We evaluated the efects of EE2 concentrations of 100 ng L−1 and 100 µg L−1 on the coral metaorganism Mussismilia harttii. The results indicated no efects on visible bleaching or Fv/Fm ratios in the corals during a 17-day microcosm experiment. However, next-generation sequencing of 16S rDNA revealed a statistically signifcant efect of high EE2 concentrations on OTU richness, and shifts in specifc microbial groups after treatments with or without EE2. These groups might be bioindicators of early shifts in the metaorganism composition caused by EE2 contamination. Estrogenic hormones are part of a group of endocrine-disrupting compounds (EDCs) that can alter the endo- crine system of animals 1–3. 17α-ethinylestradiol (EE2) is a synthetic hormone used in birth-control pills and in hormone-replacement drugs in the menopausal period, or to treat other hormonal defciencies4. EE2 is derived from the main endogenous human estrogen, estradiol (E2), but is 10 to 50 times more powerful 5,6. Its longer half-life makes EE2 more available for bioaccumulation by other animals 7–10. Tis compound is released into the environment through human excreta, and is persistent 4,11. Studies have shown that EE2 can cause estrogenic efects in very low concentrations (1 to 5 ng L −1), with a predicted no-efect concentration of 0.35 ng L−112. However, EE2 concentrations of 0.001 to 0.042 µg L−113 or higher, of 0.831 μg L −114 have been reported in some wastewater-treatment plants and their receiving water bodies, and may come into direct contact with wildlife2,7,15–17. Te presence of estrogens in water bodies is responsible for female infertility, feminization of male fsh, and sexual dysfunction of many aquatic species 2,3,18–20. Tese compounds also afect the microbiome associated with diferent organisms, such as the insect Megaselia scalaris, which had its development impacted by a hormone diet (including EE2), with a signifcant efect on microbial groups compared with control samples and the appearance of Mycobacterium, Sphingobacterium, Nocardioides, Acinetobacter and other genera 21. Mosquitoes exposed to hormone treatment in environmentally important concentrations showed a signifcant diference in their microbiome compared to untreated samples 22,23. In one study, Microbacterium laevaniformans was the most abundant species in hormone-treated samples, whereas Wol- bachia pipientis was most abundant in the control23. Continuous use of human oral contraceptive pills was found to alter the normal vaginal microbiome and increase yeast colonization 24. Tese examples from humans and insects are used as references due to the lack of information regarding the efects of EE2 on the coral-associated microbiome. Te investigation of the impacts of EE2 on other animal models and their associated microbiomes will add to the current body of information regarding the importance of this pollutant in potentially symbiotic microbial populations. Te efects of estrogens on corals have been examined in a few studies focusing on their metabolism, repro- duction and physiology 25–29. Sex steroids are biologically active in invertebrates, including corals, although their mechanisms of action remain unclear 26,30. It is suggested that estrogens stimulate the process of gamete release and coral spawning, and that their eggs contain estrogenic compounds that will aid in their fnal maturation 27,31. It is also speculated that diferences in estrogen concentration will regulate the reproductive processes of corals32. 1Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. 2Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuval, Saudi Arabia. *email: [email protected] Scientifc Reports | (2021) 11:2767 | https://doi.org/10.1038/s41598-021-82387-x 1 Vol.:(0123456789) www.nature.com/scientificreports/ Tarrant et al.33 found that corals have the capacity to take up estrogens from the water and accumulate these compounds in their tissue, although the consequences of this bioaccumulation are unknown. Corals are metaorganisms, i.e., a biological unit that includes the host and its associated microbiome, whether stable or transitory34. Coral-associated microbes are diverse, complex, dynamic, and essential for the function- ing and balance of the coral reef ecosystem35–38. Tese microorganisms have several functions that aid in coral ftness36,37,39,40, such as nitrogen fxation41, ammonia metabolism42, removal of nitrogenous waste42, production of antibiotics, physical occupation of coral space, and competition with other microorganisms, in order to protect the host from invasion of opportunistic pathogens 37,43,44. Te coral-associated microbial community is sensitive to environmental changes and can quickly respond and adapt to new environmental conditions, which is important in maintaining the homeostasis of the metaorganism37,42,44. Diferent environmental stressors, such as thermal stress 38,45,46, oil47,48 the presence of pathogens40,49,50 or ocean acidifcation51,52 can cause shifs in the coral microbiome, which may change their diversity, abundance and functionality for long periods of time53. For example, exposure of the coral Acropora muricata to relatively high levels of nickel and copper resulted in coral bleaching. Copper pollution also modi- fed the coral microbiome (eukaryotes and prokaryotes)54. One study showed that the bacterial core associated with corals can respond to a gradient of anthropogenic pollution55. Diferent stressors, such as climate change, pollution and overfshing are correlated with an increase in the richness and diversity of specifc coral-associated microbes, including the commonly found association of higher abundances of members of Vibrionaceae and Altermonadaceae with stressed and diseased corals56–58. Further, coral micro-organisms are able to degrade or neutralize toxic substances that threaten coral health, suggesting that the microbiome can protect coral health and mitigate the efects of pollution47,59. However, no reports about the efects of EDCs on the health of corals and their microbiome are currently available. Here, we evaluated the efects of EE2 on the coral Mussismilia harttii in a microcosm system, and, for the frst time, the impacts of an EDC on a coral-associated microbiome. Results Visual health status and Fv/Fm. No signifcant variations in water-quality parameters (temperature, salin- ity and pH) (Supplementary Table S1) or visual changes (Fig. S1) were observed during the experiment. Tese Scientifc Reports | (2021) 11:2767 | https://doi.org/10.1038/s41598-021-82387-x 2 Vol:.(1234567890) www.nature.com/scientificreports/ Figure 2. Non-metric multidimensional scaling (NMDS) ordination using Bray–Curtis dissimilarity, based on abundances of OTUs in samples from Mussismilia harttii treatments (n = 4). NMDS ordination of the OTU results demonstrated that, despite a slight trend toward treatment-based clus- tering at the last sampling time, the total coral-associated microbiome was not signifcantly afected by EE2 con- tamination, and was clustered only by time (days 0, 3, 9 and 17, i.e. T0, T3, T9 and T17 respectively) (p < 0.0001, pseudo F = 1.7321), regardless of the treatment (Fig. 2). Taxonomic investigation showed that Proteobacteria was the most abundant phylum in the coral samples, with or without estrogen. Tis group comprised about 60% of the bacterial community in all samples, followed by unclassifed Bacteria, Firmicutes and Bacteroidetes. Additionally, Acidobacteria showed signifcant diferences between times T0 and T17, as did Deinococcus-Termus, which also showed interaction among factors, according to ANOVA followed by a Tukey test (p < 0.05) (Fig. S4). At the class level, Alphaproteobacteria predominated, comprising about 40% of the total microbiome. Betaproteobacteria showed a signifcant reduction in relative abundance compared to the control with 100 μg of EE2 (Two-Way ANOVA, p < 0.05) and Gammaproteobacteria and Acidobacteria groups GP4 and GP10 showed signifcant difer- ences as a function of the incubation time (Two-Way ANOVA, p < 0.05) (Fig. 3A). At the genus level, taxonomic diversity and relative abundance were similar (with few diferences) among all samples. Rhizobiales_unclassifed, Verrucomicrobiaceae_unclassifed, Sphingomonadaceae_unclassifed, Erythrobacter, and Blastopirellula difered signifcantly among the diferent collection times; the last genus showed interaction among the factors (Fig. 3B). Most genera were unclassifed, related to Rhodobacteriaceae, Bacteria, Gammaproteobacteria, Alphaproteobac- teria, Ruegeria, Clostridiales and Pseudobacteriovorax. An Indicator Species
Recommended publications
  • 2.02 Rajasuriya 2008
    ARJAN RAJASURIYA National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, Sri Lanka [email protected]; [email protected] fringing and patch reefs (Swan, 1983; Rajasuriya et al., 1995; Rajasuriya & White, 1995). Fringing coral reef Selected coral reefs were monitored in the northern, areas occur in a narrow band along the coast except in western and southern coastal waters of Sri Lanka to the southeast and northeast of the island where sand assess their current status and to understand the movement inhibits their formation. The shallow recovery processes after the 1998 coral bleaching event continental shelf of Gulf of Mannar contains extensive and the 2004 tsunami. The highest rate of recovery coral patch reefs from the Bar Reef to Mannar Island was observed at the Bar Reef Marine Sanctuary where (Rajasuriya, 1991; Rajasuriya, et al. 1998a; Rajasuriya rapid growth of Acropora cytherea and Pocillopora & Premaratne, 2000). In addition to these coral reefs, damicornis has contributed to reef recovery. which are limited to a depth of about 10m, there are Pocillopora damicornis has shown a high level of offshore coral patches in the west and east of the recruitment and growth on most reef habitats island at varying distances (15 -20 km) from the including reefs in the south. An increase in the growth coastline at an average depth of 20m (Rajasuriya, of the calcareous alga Halimeda and high levels of 2005). Sandstone and limestone reefs occur as sedimentation has negatively affected some fringing discontinuous bands parallel to the shore from inshore reefs especially in the south. Reef surveys carried out areas to the edge of the continental shelf (Swan, 1983; for the first time in the northern coastal waters around Rajasuriya et al., 1995).
    [Show full text]
  • CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
    Coral Reef Degradation in the Indian Ocean Status Report 2005 Coral Reef Degradation in the Indian Ocean. The coastal ecosystem of the Indian Ocean includes environments such as mangroves, sea- Program Coordination grass beds and coral reefs. These habitats are some CORDIO Secretariat Coral Reef Degradation of the most productive and diverse environments Olof Lindén on the planet. They form an essential link in the David Souter Department of Biology and Environmental food webs that leads to fish and other seafood in the Indian Ocean Science providing food security to the local human University of Kalmar population. In addition coral reefs and mangrove 29 82 Kalmar, Sweden Status Report 2005 forests protect the coastal areas against erosion. (e-mail: [email protected], Unfortunately, due to a number of human activi- [email protected]) Editors: DAVID SOUTER & OLOF LINDÉN ties, these valuable environments are now being degraded at an alarming rate. The use of destruc- CORDIO East Africa Coordination Center David Obura tive fishing techniques on reefs, coral mining and P.O. Box 035 pollution are examples of some of these stresses Bamburi, Mombasa, Kenya from local sources on the coral reefs. Climate (e-mail: [email protected], change is another stress factor which is causing [email protected]) additional destruction of the reefs. CORDIO is a collaborative research and CORDIO South Asia Coordination Center development program involving expert groups in Dan Wilhelmsson (to 2004) Status Report 2005 countries of the Indian Ocean. The focus of Jerker Tamelander (from 2005) IUCN (World Conservation Union) CORDIO is to mitigate the widespread degrada- 53 Horton Place, Colombo 7, Sri Lanka tion of the coral reefs and other coastal eco- (e-mail: [email protected]) systems by supporting research, providing knowledge, creating awareness, and assist in CORDIO Indian Ocean Islands developing alternative livelihoods.
    [Show full text]
  • (Anthozoa) from the Lower Oligocene (Rupelian) of the Eastern Alps, Austria
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (3), 2020, 319-336. Modena C N O A S S. P. I. Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria Rosemarie Christine Baron-Szabo* & Diethard Sanders R.C. Baron-Szabo, Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington DC, 20013- 7012 USA; Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany; [email protected]; Rosemarie.Baron- [email protected] *corresponding author D. Sanders, Institut für Geologie, Universität of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; [email protected] KEY WORDS - Scleractinia, taxonomy, paleoecology, paleobiogeography. ABSTRACT - In the Werlberg Member (Rupelian pro parte) of the Paisslberg Formation (Eastern Alps), an assemblage of colonial corals of eleven species pertaining to eleven genera and eleven families was identified:Stylocoenia carryensis, Acropora lavandulina, ?Colpophyllia sp., Dendrogyra intermedia, Caulastraea pseudoflabellum, Hydnophyllia costata, Pindosmilia cf. brunni, Actinacis rollei, Pavona profunda, Agathiphyllia gregaria, and Faksephyllia faxoensis. This is the first Oligocene coral assemblage reported from the Paisslberg Formation (Werlberg Member) of the Eastern Alps, consisting exclusively of colonial forms. The assemblage represents the northernmost fauna of reefal corals reported to date for Rupelian time. The Werlberg Member accumulated during marine transgression onto a truncated succession of older carbonate rocks. The corals grew as isolated colonies and in carpets in a protected shoreface setting punctuated by high-energy events. Coral growth forms comprise massive to sublamellar forms, and branched (dendroid, ramose) forms.
    [Show full text]
  • Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans
    biology Review Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans Maria Giovanna Parisi 1,* , Daniela Parrinello 1, Loredana Stabili 2 and Matteo Cammarata 1,* 1 Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; [email protected] 2 Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; [email protected] * Correspondence: [email protected] (M.G.P.); [email protected] (M.C.) Received: 10 August 2020; Accepted: 4 September 2020; Published: 11 September 2020 Abstract: Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal’s health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process.
    [Show full text]
  • Sexual Reproduction in the Caribbean Coral Genus Isophyllia (Scleractinia: Mussidae)
    Sexual reproduction in the Caribbean coral genus Isophyllia (Scleractinia: Mussidae) Derek Soto and Ernesto Weil Department of Marine Science, Universidad de Puerto Rico, Recinto de Mayagu¨ez, Mayagu¨ez, Puerto Rico, United States ABSTRACT The sexual pattern, reproductive mode, and timing of reproduction of Isophyllia sinuosa and Isophyllia rigida, two Caribbean Mussids, were assessed by histological analysis of specimens collected monthly during 2000–2001. Both species are simultaneous hermaphroditic brooders characterized by a single annual gametogenetic cycle. Spermatocytes and oocytes of different stages were found to develop within the same mesentery indicating sequential maturation for extended planulation. Oogenesis took place during May through April in I. sinuosa and from August through June in I. rigida. Oocytes began development 7–8 months prior to spermaries but both sexes matured simultaneously. Zooxanthellate planulae were observed in I. sinuosa during April and in I. rigida from June through September. Higher polyp and mesenterial fecundity were found in I. rigida compared to I. sinuosa. Larger oocyte sizes were found in I. sinuosa than in I. rigida, however larger planula sizes were found in I. rigida. Hermaphroditism is the exclusive sexual pattern within the Mussidae while brooding has been documented within the related genera Mussa, Scolymia and Mycetophyllia. This study represents the first description of the sexual characteristics of I. rigida and provides an updated description of I. sinuosa. Subjects Developmental Biology, Marine Biology, Zoology Keywords Caribbean, Mussidae, Coral reproduction, Hermaphroditic, Brooder Submitted 5 October 2015 INTRODUCTION Accepted 7 October 2016 Published 10 November 2016 Reproduction in corals consists of a sequence of events which include: gametogenesis, Corresponding author spawning (broadcasters), fertilization, embryogenesis, planulation (brooders), dispersal, Derek Soto, [email protected] settlement and recruitment (Harrison & Wallace, 1990).
    [Show full text]
  • Scyphozoa: Coronatae) Support the Concept of Perennation by Tissue Saving and Con- Firm Dormancy
    EXPERIMENTS IN NATURE AND LABORATORY OBSERVATIONS WITH NAUSITHOE AUREA (SCYPHOZOA: CORONATAE) SUPPORT THE CONCEPT OF PERENNATION BY TISSUE SAVING AND CON- FIRM DORMANCY Fábio Lang da Silveira1 (correspondence author; correspondência para), Gerhard Jarms2 & André Carrara Morandini1 Biota Neotropica v2 (n2) – http://www.biotaneotropica.org.br/v2n2/pt/abstract?article+BN02202022002 Date Received 07/19/2002 Revised 09/23/2002 Accepted 10/02/2002 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, 05422-970, São Paulo, SP, Brasil. Tel.:+55-11-30917619 Fax: +55-11-30917513 2 Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany, Tel.: +49-40-428382086 Fax: +49-40-428382086 e-mails: [email protected], [email protected], [email protected] Abstract Stephanocyphistomae of Nausithoe aurea from São Paulo State, Brazil (in subtropical western South Atlantic wa- ters), were relocated with their substrata in nature to study their survivorship under control and and experimental series — i.e. the polyps in the original orientation and inverted, and in each series exposed and buried polyps. We found that N. aurea survives over 13 months in nature, between 1/3 – 1/4 of 268 stephanoscyphistomae as normal feeding polyps, by segmentation produces planuloids and rejuvenates the polyps — an additional explanation for clustering of the solitary stephanocyphistomae. Dormant living tissues within the periderm of the tube were considered resting stages. The results support the concept that coronates in general have the capacity to save all living tissue and transform it to the energy saving sessile stage — the perennial polyp.
    [Show full text]
  • A Guide to the Identification of the Common Corals of St. Croix
    A Guide to the Identification of the Common Corals of St. Croix Thomas Suchanek Department of Biology University of California Davis, CA Converted to digital format by Thomas F. Barry (NOAA/RSMAS) in 2004. Copy available at the NOAA Miami Regional Library. Minor editorial changes may have been made. Guide to the Common Corals of St. Croix 197 A Guide to the Identification of the Common Corals of St. Croix Thomas Suchanek Dept. of Biology University of California Davis, CA INTRODUCTION This guide was designed as an aid in identifying both live and dead corals from St. Croix which form hard, calcium carbonate skeletons. This encompasses representatives both from the Class Anthozoa (the true or scleractinian corals) and from the Class Hydrozoa (hydrocorals). Representatives from the third class of Cnidaria, the Scyphozoa, produce no calcium carbonate skeletons and are not discussed. Of the 60 or so species of "stony" corals found in the western Atlantic region, this guide focuses on 37 species which are found relatively commonly on St. Croix. Other representatives which may be common in other locations such as St. Thomas, Puerto Rico, Jamaica or Florida, but are not common on St. Croix, have not been included. Various references listed at the end of the text include many of those other species. The guide is arranged in two sections. First is a descriptive section including taxonomic and natural history information on each species represented. Following that section is a series of plates which depict three conditions for each species. First is a habitat photo, as the coral colony would appear to a swimmer or diver approaching it in the field.
    [Show full text]
  • Survey Report on Marine Biodiversity of Shell Bay, Trincomalee
    Survey Report on Marine Biodiversity of Shell Bay, Trincomalee 2010 Arjan Rajasuriya Research Officer National Aquatic Resources Research and Development Agency Contents Page no Summary 3 Introduction 4 Methods 4 Results 8 Human impacts 15 Natural impacts 15 Discussion 16 Recommendations 18 References 18 Survey team, Photographs and Acknowledgements 19 Plate 1: Coast of Shell Bay and traditional fishing 20 Plate 2: Hard and Soft corals 21 & 22 Plate 3: Giant clams 23 & 24 Plate 4: Bivalves and Gastropods 25 Plate 5: Starfish, Feather stars, Sea cucumbers, Sea urchins 26 Plate 6: Sponges 27 & 28 Plate 7: Sea anemones & Corallimorpharians 29 & 30 Plate 8: Nudibranchs, Flatworms, Tubeworms & Reef Shrimp 31 Page | 2 Summary There are no records of a marine biodiversity study carried out in Shell Bay in the past. The findings of this survey indicate that Shell Bay contains highly diverse and rich marine life. Twelve colour variations of the giant clams were found among the nearshore reefs which indicate that the area may harbour hitherto unknown genetic diversity among Tridacnids in Sri Lanka. Fifty six (56) species of hard corals and 160 species of reef fish were also recorded. In addition there were many species of Sponges, Echinoderms and Molluscs. The marine environment of Koddiyar Bay and the surrounding area is directly influenced by the Mahaweli River waters and the deep canyon close to shore. The presence of megafauna also indicates that this is a special marine environment and this whole system should be studied as a single ecosystem. Presently, there is low to medium scale fishing in the area.
    [Show full text]
  • Review of Species Selected on the Basis of the Analysis of 2015 CITES Export Quotas
    UNEP-WCMC technical report Review of species selected on the basis of the Analysis of 2015 CITES export quotas (Version edited for public release) Review of species selected on the basis of the Analysis of 2015 CITES export quotas Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared November 2015 Copyright European Commission 2015 Citation UNEP-WCMC. 2015. Review of species selected on the basis of the Analysis of 2015 CITES export quotas. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision-makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed, so that they can provide the same services at national and regional scales. The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, the European Commission or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Barcoding Corals: Limited by Interspecific Divergence, Not Intraspecific Variation
    Molecular Ecology Resources (2008) 8, 247–255 doi: 10.1111/j.1471-8286.2007.01996.x DNABlackwell Publishing Ltd BARCODING Barcoding corals: limited by interspecific divergence, not intraspecific variation T. L. SHEARER* and M. A. COFFROTH† *School of Biology, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA 30332-0230, USA, †Department of Geology, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA Abstract The expanding use of DNA barcoding as a tool to identify species and assess biodiversity has recently attracted much attention. An attractive aspect of a barcoding method to iden- tify scleractinian species is that it can be utilized on any life stage (larva, juvenile or adult) and is not influenced by phenotypic plasticity unlike morphological methods of species identification. It has been unclear whether the standard DNA barcoding system, based on cytochrome c oxidase subunit 1 (COI), is suitable for species identification of scleractinian corals. Levels of intra- and interspecific genetic variation of the scleractinian COI gene were investigated to determine whether threshold values could be implemented to discriminate conspecifics from other taxa. Overlap between intraspecific variation and interspecific diver- gence due to low genetic divergence among species (0% in many cases), rather than high levels of intraspecific variation, resulted in the inability to establish appropriate threshold values specific for scleractinians; thus, it was impossible to discern most scleractinian species using this gene. Keywords: COI, DNA barcoding, interspecific divergence, intraspecific variation, scleractinian coral, species identification Received 24 January 2007; revision accepted 15 August 2007 DNA barcoding has become an attractive, yet controversial et al.
    [Show full text]
  • Impact of Invasive Tubastraea Spp. (Cnidaria: Anthozoa)
    Aquatic Invasions (2020) Volume 15, Issue 1: 98–113 Special Issue: Proceedings of the 10th International Conference on Marine Bioinvasions Guest editors: Amy Fowler, April Blakeslee, Carolyn Tepolt, Alejandro Bortolus, Evangelina Schwindt and Joana Dias CORRECTED PROOF Research Article Impact of invasive Tubastraea spp. (Cnidaria: Anthozoa) on the growth of the space dominating tropical rocky-shore zoantharian Palythoa caribaeorum (Duchassaing and Michelotti, 1860) Isabella F. Guilhem1, Bruno P. Masi1,2 and Joel C. Creed1,2,* 1Laboratório de Ecologia Marinha Bêntica, Department of Ecology, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC Sala 220, Rio De Janeiro, RJ CEP 20550-900, Brazil 2Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, CEP 20031-203, Centro, Rio de Janeiro, RJ, Brazil *Corresponding author E-mail: [email protected] Co-Editors’ Note: This study was first presented at the 10th International Conference Abstract on Marine Bioinvasions held in Puerto Madryn, Argentina, October 16–18, 2018 Competition for space directly affects the structure of the sessile benthic communities (http://www.marinebioinvasions.info). Since on hard substrates. On the Brazilian coast Palythoa caribaeorum is an abundant their inception in 1999, the ICMB meetings shallow water mat-forming zoantharian and has fast growth rates. The objective of have provided a venue for the exchange of the present study was to assess the zoantharian’s biotic resistance by investigating information on various aspects of biological invasions in marine ecosystems, including changes in growth rates when interacting with the invasive sun corals Tubastraea ecological research, education, management tagusensis and T.
    [Show full text]
  • Investigating the Driving Mechanisms Behind Differences in Bleaching
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 6-15-2015 Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria Strigosa and Diploria Labyrinthiformis Zoe A. Pratte Florida International University, [email protected] DOI: 10.25148/etd.FIDC000082 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Aquaculture and Fisheries Commons, Bacteriology Commons, Environmental Microbiology and Microbial Ecology Commons, Genomics Commons, Immunity Commons, Marine Biology Commons, and the Other Animal Sciences Commons Recommended Citation Pratte, Zoe A., "Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria Strigosa and Diploria Labyrinthiformis" (2015). FIU Electronic Theses and Dissertations. 2217. https://digitalcommons.fiu.edu/etd/2217 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida INVESTIGATING THE DRIVING MECHANISMS BEHIND DIFFERENCES IN BLEACHING AND DISEASE SUSCEPTIBILITY BETWEEN TWO SCLERACTINIAN CORALS, PSEUDODIPLORIA STRIGOSA AND DIPLORIA LABYRINTHIFORMIS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Zoe A. Pratte 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Zoe A. Pratte, and entitled Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria strigosa and Diploria labyrinthiformis, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]