2.02 Rajasuriya 2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RP: Sri Lanka: Hikkaduwa-Baddegama Section Of
Resettlement Plan May 2011 Document Stage: Draft SRI: Additional Financing for National Highway Sector Project Hikkaduwa–Baddegama Section of Hikkaduwa–Baddegama–Nilhena Road (B153) Prepared by Road Development Authority for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 11 May 2011) Currency unit – Sri Lanka rupee (Rs) Rs1.00 = $0.009113278 $1.00 = Rs109.730000 ABBREVIATIONS ADB – Asian Development Bank CEA – Central Environmental Authority CSC – Chief Engineer’s Office CSC – Construction Supervision Consultant CV – Chief Valuer DSD – Divisional Secretariat Division DS – Divisional Secretary ESD – Environment and Social Division GN – Grama Niladhari GND – Grama Niladhari Division GOSL – Government of Sri Lanka GRC – Grievance Redress Committee IOL – inventory of losses LAA – Land Acquisition Act LARC – Land Acquisition and Resettlement Committee LARD – Land Acquisition and Resettlement Division LAO – Land Acquisition Officer LARS – land acquisition and resettlement survey MOLLD – Ministry of Land and Land Development NEA – National Environmental Act NGO – nongovernmental organization NIRP – National Involuntary Resettlement Policy PD – project director PMU – project management unit RP – resettlement plan RDA – Road Development Authority ROW – right-of-way SD – Survey Department SES – socioeconomic survey SEW – Southern Expressway STDP – Southern Transport Development Project TOR – terms of reference WEIGHTS AND MEASURES Ha hectare km – kilometer sq. ft. – square feet sq. m – square meter NOTE In this report, "$" refers to US dollars. This resettlement plan is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. -
Supplementary Material
Supplementary Material SM1. Post-Processing of Images for Automated Classification Imagery was collected without artificial light and using a fisheye lens to maximise light capture, therefore each image needed to be processed prior annotation in order to balance colour and to minimise the non-linear distortion introduced by the fisheye lens (Figure S1). Initially, colour balance and lenses distortion correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). However, in order to optimize the manual post-processing time of thousands of images, more recent images from the Indian Ocean and Pacific Ocean were post- processed using compressed images (jpeg format) and an automatic batch processing in Photoshop and ImageMagick, the latter an open-source software for image processing (www.imagemagick.org). In view of this, the performance of the automated image annotation on images without colour balance was contrasted against images colour balanced using manual post-processing (on raw images) and the automatic batch processing (on jpeg images). For this evaluation, the error metric described in the main text (Materials and Methods) was applied to the images from following regions: the Maldives and the Great Barrier Reef (Figures S2 and S3). We found that the colour balance applied regardless the type of processing (manual vs automatic) had an important beneficial effect on the performance of the automated image annotation as errors were reduced for critical labels in both regions (e.g., Algae labels; Figures S2 and S3). Importantly, no major differences in the performance of the automated annotations were observed between manual and automated adjustments for colour balance. -
Hawai'i Institute of Marine Biology Northwestern Hawaiian Islands
Hawai‘i Institute of Marine Biology Northwestern Hawaiian Islands Coral Reef Research Partnership Quarterly Progress Reports II-III August, 2005-March, 2006 Report submitted by Malia Rivera and Jo-Ann Leong April 21, 2006 Photo credits: Front cover and back cover-reef at French Frigate Shoals. Upper left, reef at Pearl and Hermes. Photos by James Watt. Hawai‘i Institute of Marine Biology Northwestern Hawaiian Islands Coral Reef Research Partnership Quarterly Progress Reports II-III August, 2005-March, 2006 Report submitted by Malia Rivera and Jo-Ann Leong April 21, 2006 Acknowledgments. Hawaii Institute of Marine Biology (HIMB) acknowledges the support of Senator Daniel K. Inouye’s Office, the National Marine Sanctuary Program (NMSP), the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve (NWHICRER), State of Hawaii Department of Land and Natural Resources (DLNR) Division of Aquatic Resources, US Fish and Wildlife Service, NOAA Fisheries, and the numerous University of Hawaii partners involved in this project. Funding provided by NMSP MOA 2005-008/66832. Photos provided by NOAA NWHICRER and HIMB. Aerial photo of Moku o Lo‘e (Coconut Island) by Brent Daniel. Background The Hawai‘i Institute of Marine Biology (School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa) signed a memorandum of agreement with National Marine Sanctuary Program (NOS, NOAA) on March 28, 2005, to assist the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve (NWHICRER) with scientific research required for the development of a science-based ecosystem management plan. With this overriding objective, a scope of work was developed to: 1. Understand the population structures of bottomfish, lobsters, reef fish, endemic coral species, and adult predator species in the NWHI. -
Settlement of Larvae from Four Families of Corals in Response to a Crustose Coralline Alga and Its Biochemical Morphogens Taylor N
www.nature.com/scientificreports OPEN Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens Taylor N. Whitman1,2, Andrew P. Negri 1, David G. Bourne 1,2 & Carly J. Randall 1* Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identifed for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (> 10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most efective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (> 50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa. -
Coral Health and Disease in the Pacific: Vision for Action
IV. STATE OF KNOWLEDGE IN THE PACIFIC—WHAT DO WE KNOW AND WHAT HAVE WE LEARNED? OVERVIEW OF ISSUES UNIQUE TO THE PACIFIC: BIOLOGICAL & SOCIAL PERSPECTIVES Michael J. Gawel Guam EPA 120 Bengbing St. Y-Papao Dededo, GU 96929 [email protected] Pacific Islands The term “Pacific Islands” in the context of this paper arbitrarily refers to those tropical islands of the central and western Pacific Ocean which support shallow hermatypic coral reefs, but excluding the Hawaiian Archipelago, which is covered in other papers. The tropical Pacific Island nations and territories all support coral reefs and, no doubt, harbor coral diseases, although these have not been scientifically documented in many of the islands. In fact, as part of the U.S. National Action Plan to Conserve Coral Reefs, surveys in 2002 and 2004 of coral reef academic scientists, resource managers, government agencies and NGOs recorded that in the U.S. Pacific islands they perceived “no threat” from coral disease, although American Samoa registered an increase to perception of “moderate threat” in the 2004 survey (Waddell, 2005). This lack of concern partially reflects a lack of information on the status of diseases in many islands. Wilkinson (2004, p. 405) notes that in American Samoa and Micronesia “Coral bleaching and disease were either rare or undocumented in 1994, but are now clearly evident and considered a serious threat to many reefs in the region.” The Pacific island coral reefs range from veneers on newly emergent volcanic islands, to platform-like fringing reefs, to barrier reefs with lagoons, to atolls, and include non- emergent isolated banks. -
CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
Coral Reef Degradation in the Indian Ocean Status Report 2005 Coral Reef Degradation in the Indian Ocean. The coastal ecosystem of the Indian Ocean includes environments such as mangroves, sea- Program Coordination grass beds and coral reefs. These habitats are some CORDIO Secretariat Coral Reef Degradation of the most productive and diverse environments Olof Lindén on the planet. They form an essential link in the David Souter Department of Biology and Environmental food webs that leads to fish and other seafood in the Indian Ocean Science providing food security to the local human University of Kalmar population. In addition coral reefs and mangrove 29 82 Kalmar, Sweden Status Report 2005 forests protect the coastal areas against erosion. (e-mail: [email protected], Unfortunately, due to a number of human activi- [email protected]) Editors: DAVID SOUTER & OLOF LINDÉN ties, these valuable environments are now being degraded at an alarming rate. The use of destruc- CORDIO East Africa Coordination Center David Obura tive fishing techniques on reefs, coral mining and P.O. Box 035 pollution are examples of some of these stresses Bamburi, Mombasa, Kenya from local sources on the coral reefs. Climate (e-mail: [email protected], change is another stress factor which is causing [email protected]) additional destruction of the reefs. CORDIO is a collaborative research and CORDIO South Asia Coordination Center development program involving expert groups in Dan Wilhelmsson (to 2004) Status Report 2005 countries of the Indian Ocean. The focus of Jerker Tamelander (from 2005) IUCN (World Conservation Union) CORDIO is to mitigate the widespread degrada- 53 Horton Place, Colombo 7, Sri Lanka tion of the coral reefs and other coastal eco- (e-mail: [email protected]) systems by supporting research, providing knowledge, creating awareness, and assist in CORDIO Indian Ocean Islands developing alternative livelihoods. -
Ongoing Project Details
Ongoing Project Details Development TEC Loan Amount Project Name Objective Partner (USD Mn) (USD Mn) Agriculture Fisheries ADB Northern Province Sustainable PDA will finance consultancy services to undertake detail engineering design which 1.59 1.30 Fisheries Development Project, include the updating of cost, updating of social safeguard assessments and Project Design Advance (PDA) preparation of bidding documents and supporting bidding process. Sub Total - Fisheries 1.59 1.30 Agriculture ADB Mahaweli Water Security Investment The following three investment projects will be implemented under the above 432.00 360.00 Program investment program. Tranche 1 - USD 190 Mn (i) Upper Elahera Canal Project Tranche 2- USD 242 Mn Construction of 9 km Kaluganga-Morgahakanda Transfer Canal to transfer water from Kaluganga reservoir to Moragahakanda Reservoirs and Upper Elehera Canals to connect Moragahakanda Reservoir to the existing reservoirs; Huruluwewa, Manakattiya, Eruwewa and Mahakanadarawa. (ii) North Western Province Canal Project Construction of 96 km of new and upgraded canals, including a new 940 m tunnel and two new 25 m tall dams will be constructed under NWPCP to transfer water from the Dambulu Oya and existing Nalanda and Wemedilla Reservoirs to North Western Province. (iii) Minipe Left Bank Canal Rehabilitation Project Heightening the headwork’s, construction of new automatic downstream- controlled intake gates to the left bank canal; construction of new emergency spill weirs to both left and right bank canals; rehabilitation of 74 km Minipe Left Bank Canal, including regulator and spill structures. 1 of 24 Ongoing Project Details Development TEC Loan Amount Project Name Objective Partner (USD Mn) (USD Mn) IDA Agriculture Sector Modernization Objective is to support increasing Agricultural productivity, improving market 125.00 125.00 Project access and enhancing value addition of small holder farmers and agribusinesses in the project areas. -
Unique Quantitative Symbiodiniaceae Signature of Coral Colonies Revealed
www.nature.com/scientificreports OPEN Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio- Received: 14 November 2018 Accepted: 25 April 2019 temporal survey in Moorea Published: xx xx xxxx Héloïse Rouzé1, Gaël Lecellier 2,3, Xavier Pochon4,5, Gergely Torda6 & Véronique Berteaux-Lecellier 1,2 One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinofagellates are characterized by diferent biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals’ Symbiodiniaceae community can change via shufing and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10–18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specifc rates of occurrence. However, the dynamics of the corals’ Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shufing event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specifc range of quantities, giving a unique ‘Symbiodiniaceae signature’ to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specifc diferences in resistance and resilience observed during environmental anomalies. Dinofagellate algae from the family Symbiodiniaceae are one of the keystone taxa for coral reef ecosystems. -
Observations on the Reproduction of Acropora Corals Along the Tuticorin Coast of the Gulf of Mannar, Southeastern India
Indian Journal of Marine Sciences Vol. 39(2), June 2010, pp. 219-226 Observations on the reproduction of Acropora corals along the Tuticorin coast of the Gulf of Mannar, Southeastern India K Diraviya Raj & J K Patterson Edward Suganthi Devadason Marine Research Institute, 44-Beach Road, Tuticorin–628 001, Tamil Nadu, India [E-mail: [email protected]] Received 5 February 2009; revised 22 June 2009 Pattern of reproduction was studied in Acropora species along Tuticorin coast in the Gulf of Mannar from 2006-2008. Extensive surveys were conducted to monitor reproductive maturity and the timing of spawning. Gametes were observed from January with colonies releasing gametes by the end of March. Acropora cytherea showed immature colonies in January (48-79%) and February (56-76%) and mature colonies in March (36-86%). Likewise, the other species of Acropora examined showed 50-75% of immature colonies in January and an increase of 10-20% of immature colonies in February, and matured in March. The average percentage of mature colonies in March was as follows, A. formosa 47-76%, A. valenciennesi 50-81%, A. intermedia 50-81%, A. nobilis 25-82%, A. micropthalma 56-83%, A. hemprichi 39-83%, A. hyacinthus 33-100%, A. corymbosa 59-65%. Spawning was observed in A. cytherea on 24 March 2006, 10 days after full moon; 28 March in 2007, 5 days prior to full moon; and 8 March 2008, 1 day after new moon. Approximately 30,000 egg and sperm bundles were observed in 1 litre of water and each bundle had 20-25 eggs in A. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Assessment of Forestry-Related Requirements for Rehabilitation and Reconstruction of Tsunami-Affected Areas of Sri Lanka
ASSESSMENT OF FORESTRY-RELATED REQUIREMENTS FOR REHABILITATION AND RECONSTRUCTION OF TSUNAMI-AFFECTED AREAS OF SRI LANKA MISSION REPORT 10 – 24 MARCH 2005 SIMMATHIRI APPANAH NATIONAL FOREST PROGRAMME ADVISOR (ASIA-PACIFIC) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS CONTENTS Acknowledgments ................................................................................................................... 1 1. Executive Summary ........................................................................................................... 1 2. Background......................................................................................................................... 2 3. Key features of the Mission and approach ...................................................................... 3 4. Impact of the Tsunami....................................................................................................... 4 4.1 General overview ............................................................................................................... 4 4.2 Natural habitats affected by the Tsunami .......................................................................... 5 5. The impact of the Tsunami on natural and manmade ecosystems................................ 7 5.1 Coastlines........................................................................................................................... 7 5.2 Home gardens ................................................................................................................... -
(Anthozoa) from the Lower Oligocene (Rupelian) of the Eastern Alps, Austria
TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (3), 2020, 319-336. Modena C N O A S S. P. I. Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria Rosemarie Christine Baron-Szabo* & Diethard Sanders R.C. Baron-Szabo, Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington DC, 20013- 7012 USA; Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany; [email protected]; Rosemarie.Baron- [email protected] *corresponding author D. Sanders, Institut für Geologie, Universität of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; [email protected] KEY WORDS - Scleractinia, taxonomy, paleoecology, paleobiogeography. ABSTRACT - In the Werlberg Member (Rupelian pro parte) of the Paisslberg Formation (Eastern Alps), an assemblage of colonial corals of eleven species pertaining to eleven genera and eleven families was identified:Stylocoenia carryensis, Acropora lavandulina, ?Colpophyllia sp., Dendrogyra intermedia, Caulastraea pseudoflabellum, Hydnophyllia costata, Pindosmilia cf. brunni, Actinacis rollei, Pavona profunda, Agathiphyllia gregaria, and Faksephyllia faxoensis. This is the first Oligocene coral assemblage reported from the Paisslberg Formation (Werlberg Member) of the Eastern Alps, consisting exclusively of colonial forms. The assemblage represents the northernmost fauna of reefal corals reported to date for Rupelian time. The Werlberg Member accumulated during marine transgression onto a truncated succession of older carbonate rocks. The corals grew as isolated colonies and in carpets in a protected shoreface setting punctuated by high-energy events. Coral growth forms comprise massive to sublamellar forms, and branched (dendroid, ramose) forms.