Shade-Dwelling Corals of the Great Barrier Reef

Total Page:16

File Type:pdf, Size:1020Kb

Shade-Dwelling Corals of the Great Barrier Reef SERIES Vol. 10: 173-185, 1983 MARINE ECOLOGY - PROGRESS Published January 3 Mar. Ecol. Prog. Ser. Shade-Dwelling Corals of the Great Barrier Reef Zena D. Dinesen* Department of Marine Biology, James Cook University. Townsville, Queensland 481 1, Australia ABSTRACT: Shade-dwelling corals were studied from 127 caves, tunnels, and overhangs from a variety of reefs within the Great Barrier Reef Province. Over 3,000 coral colonies were recorded from these shaded habitats, and more than 150 species, mostly herrnatypic, were represented. Three groups of shade-dwelling corals are tentatively distinguished: generally skiophilous (shade-loving) corals, found both in deep water and in shallow but shaded conditions; preferentially cavernicolous corals, growing mostly in shallow, shaded habitats; and shade-tolerant corals, common also in better illumi- nated parts of the reef, but tolerant of a wide range of conditions. Hermatypic shade-dwelling corals usually have thin, flattened growth forms, and the coralla are generally small, suggesting that low light intensity is restricting both the shape and size of colonies. Apart from an abundance of ahermatypic corals on the ceilings of some cavities, particular fauna1 zones were not detected in different sectors of cavities or at different irradiance levels. This lack of zonation is attributed principally to 2 factors. Firstly, the coral fauna represents only a well shaded but not 'obscure' (dark) aspect of skiophilous communities; secondly, ahermatyplc corals were not found in conditions darker than those tolerated by some hermatypic species. INTRODUCTION nicolous and bathyal sponge faunas have been noted at Madagascar (Vacelet and Vasseur, 1977). The Recent workers (Hartman and Goreau, 1970; Jack- emergence of various sponges (including sclero- son et al., 1971; Jaubert and Vasseur, 1974; Bonem, sponges) and brachiopods from shaded habitats with 1977; Vasseur, 1977) have emphasized the signifi- increasing depth has also been observed (Hartman, cance, within the coral reef framework, of shaded envi- 1973, 1977; Noble et al., 1976; Logan, 1977). However, ronments which offer skiophilous organisms an impor- the cave-dwelling fauna is not only representative of a tant refuge from competition with faster growing deep water fauna displaced into shallow, shaded envi- species of the 'open' reef. Shaded habitats may contain ronments. For example, Vasseur (1974) has reported a wide range of sessile cryptic organisms, including that some pharetronid sponges are strictly caver- sponges, algae, coelenterates, brachiopods, bryozoans, nicolous. serpulid worms, encrusting foraminiferans, ascidians, Despite the increasing attention being focused on and bivalve molluscs (Laborel, 1960; Per& and Picard, shaded reef habitats, little information has been col- 1964; Vacelet, 1967a, b; Hartman and Goreau, 1970; lected on the cave-dwelling scleractinian fauna of Jackson et al., 1971; Pouliquen, 1971; Vasseur, 1974, Indo-Pacific reefs. The only detailed records are from 1977; Bonem, 1977; Cuffey and Fonda, 1977; Logan, the southwest Indian Ocean (Jaubert and Vasseur, 1977). These organisms are distributed primarily 1974; Vasseur, 1974, 1977). according to irradiance levels, although water move- From Madagascar, Jaubert and Vasseur (1974) ment may also influence their distribution. described skiophilous communities from a wide range Some components of shallow, cryptic communities of shaded and dark reef cavities. Three basic commun- also occur in deep water. For instance, bathyal sponges ity types have been defined, according to irradiance have been found in dark caves in the Mediterranean levels, and sometimes hydrodynamic factors (Vasseur, Sea (Pouliquen, 1969), and similarities between caver- 1974). Hermatypic corals, occurring at 2.0 to 8.0 % subsurface irradiance, are characteristic of a better illuminated aspect dominated by algae. Ahermatypic Present address: Australian Institute of Marine Science, species are notable in some shaded 'animal-dominant' P.M.B.No. 3, M.S.O.Townsville, Queensland 4810, Australia facies. Species of Dendrophyllia and Tubastraea are O Inter-Research/Printed in F. R. Germany 174 Mar. Ecol. Prog. Ser found at 0.5 to 4.0 % subsurface irradiance (often ceiling, back wall, floor, and 2 side walls. The position > 1.0 %), while other ahermatypes (species of Phyllan- of a colony on one of these surfaces was further defined gia, Culicia, and Balanophyllia) occur at slightly lower with respect to its proximity to the aperture. Although irradiance levels (< 0.1 % subsurface light).The cavity shape did not always conform to the theoretical 'exclusively animal' biocoenosis, confined to darker cube, the data indicate possible preferences of species conditions, is characterized by sponges, and is appa- for growing on certain cavity surfaces. rently devoid of corals. As part of a research programme on coral distribu- tion patterns, the author has investigated shade-dwell- ing scleractinians of the Great Barrier Reef (G.B.R.). This study revealed definite regional differences in the shade-dwelling coral fauna, with cavities in the south- em part of the G.B.R. tending to have an impoverished coral fauna compared with that recorded further north. These regional variations are discussed elsewhere (Dinesen, 1982). This paper investigates the nature of the shade-dwelling coral fauna, to determine whether it is basically cavernicolous, or if it has closer affinities with assemblages from deep water, or from shallow, 'open' reef areas. The distribution and zonation of coral species within cavities and according to irradiance levels are examined, and modifications of growth form and other adaptive strategies of shade-dwelling corals, are discussed. METHODS Field Methods Sampling localities represent a wide range of reef types from various sectors of the G.B.R. In the Lizard Island region (14'-15" S; Fig. l),100 reef cavities were investigated. Study sites included the fringing reefs and lagoon of the Lizard Island Group; outer slope, reef channel, and back reef areas of 5 outer barrier reefs (Jewell, Carter, Yonge, No Name, and South Ribbon Fig. 1. Reefs in Lizard Island region. Sampling localities Reefs); and North Direction Island, Eyrie, and MacGil- given in text. Inset of Queensland coast indicates general livray Reefs. Two cavities were studied at Keeper Reef locations of study areas (18'45' S, 147" 15' E), and a further 25 at Heron, Wis- tari, and Wilson Reefs in the Capricorn Group (around ONORTH REEF 23' S; Fig. 2). All cavities investigated were within the ISLIND TRYON ISLAND reef slope in a depth range of 4 to 21 m (approximately .o O~ZE~TFIELD D OWILSOII 1SLI.D below low water datum). NORTH WEST lSLAND %RECI ISLAND i CAPRICORN For every coral in each cavity were recorded its GROUP WIST~RIREEF OSVKES REEF identity, colony size and shape, position within the 'lPECApRIEORN ERSKINE ISLAND 0 Q 23°30'S- cavity, and the irradiance level at which it occurred. MASTHEAD ISLAND ONE TREE ISLAND c,-- Colony size was determined from maximum length POLMllSE REEF LAMONT REEF 4 QFITZROI REEF and maximum width perpendicular to the length (mea- r-\/ LLEWELLYN REEF sured to the nearest cm). Since most colonies were . (7 BOULT REEFO rather flat, measurements in 2 dimensions were consi- BUNKER GROUP HOSKYN ISLANDS@ dered adequate. The overall growth form was FAIRFAX ISLANDSO recorded, and any remarkable growth modifications MUSORAVE ISl!:iJ@ noted. 1 S Z00O'E To expedite recording the locations of coral colonies, Fig. 2. Reefs in Capricorn region. Sampling localities given in each cavity was treated as a theoretical cube, with text Dinesen: Shade-dwelling corals of Great Barrier Reef 175 Irradiance readings were taken with a Gossen applied to test whether these species occurred more Lunasix-3 lightmeter. Similar equipment has been often, or less frequently, at cavity apertures. used in studies of coral calcification and photosynthe- Multiple range tests were used to compare mean tic carbon fixation (Barnes and Taylor, 1973). The irradiance records for shade-dwelling coral species, range of sensitivity is 0.17 to 350,000 lux (1 Klux = and mean values for maximum colony length, and 19.5 ~Einsteinsm-'S-' = 4.27 watts m-', surface solar maximum colony area. The test used was Modified irradiance [400 to 700 nm]). The equipment is Least Significant Difference, a test exact for unequal designed so that once a reading is taken, the meter can group sizes, available with the SPSS package (Nie et be turned off, but the reading is retained on the scale. al., 1975). To investigate the relationship, if any, Thus records could be taken with the meter held at between colony size and irradiance, simple regres- arm's length to reduce the effect of shadow caused by sions were carried out (again using SPSS) for both the observer. Some cavities were too small for a diver maximum colony length and maximum colony area to enter to obtain incident light measurements, thus with irradiance records. measurements were restricted to reflected light (less Analyses were performed only for the more fre- than the amount of incident light). Light readings quently encountered corals, i. e. those with 15 or more taken for individual corals were expressed as a percen- records. Data for distribution on cavity surfaces, tage of the mean subsurface irradiance falling on a irradiance levels, colony size, and growth forms of horizontal plane (the mean calculated from readings hermatypes, are presented only for these more com- taken before and after the
Recommended publications
  • The Effects of Aquarium Culture on Coral Oocyte Ultrastructure
    www.nature.com/scientificreports Corrected: Author Correction OPEN The efects of aquarium culture on coral oocyte ultrastructure Chiahsin Lin1,2, Jian-Ming Zhuo2, Gabriella Chong2, Li-Hsueh Wang1,2, Pei-Jie Meng1,2 & Sujune Tsai3,4 Received: 29 November 2016 As the world’s oceans are currently threatened by anthropogenic pollution and climate change, coral Accepted: 29 August 2018 breeding has become an important conservation method, since it can limit marine organisms’ exposure Published online: 11 October 2018 to sub-optimal environment conditions. However, the aquarium environment is inherently diferent from the ocean, and this could manifest in physiological changes in the reared organisms, particularly with respect to their reproduction. Therefore, the aim of this study was to observe and compare the ultrastructure of the oocytes from wild Oxypora lacera and Echinopora gemmacea with the oocytes from cultured corals using transmission electron microscope. The oocytes from Wild O. lacera and E. gemmacea were larger than cultured ones, though their microvillus layers were signifcantly thiner. Internally, lipid granule areas and yolk material density in the oocytes of wild O. lacera and E. gemmacea were ~25% lower than in their cultured counterparts. Food availability and the presence and availability of symbiotic dinofagellates (genus Symbiodinium) may have played a role in driving these lipid-based diferences, in particular, as cultured corals had limited potential for heterotrophic feeding. These data will aid in future coral husbandry eforts. Coral reefs are common structures across Earth’s tropical seas; apart from their critical role in harbouring an immense degree of marine biodiversity1,2, they also serve as a natural barrier against storms and strong wave action3.
    [Show full text]
  • High Clonality in Acropora Palmata and Acropora Cervicornis Populations of Guadeloupe, French Lesser Antilles
    CSIRO PUBLISHING Marine and Freshwater Research Short Communication http://dx.doi.org/10.1071/MF14181 High clonality in Acropora palmata and Acropora cervicornis populations of Guadeloupe, French Lesser Antilles A. JapaudA, C. BouchonA, J.-L. ManceauA and C. FauvelotB,C AUMR 7208 BOREA, LabEx CORAIL, Universite´ des Antilles et de la Guyane, BP 592, 97159 Pointe-a`-Pitre, Guadeloupe. BUMR 9220 ENTROPIE, LabEx CORAIL, Centre IRD de Noume´a, 101 Promenade Roger Laroque, BPA5, 98848 Noume´a, New Caledonia. CCorresponding author. Email: [email protected] Abstract. Since the 1980s, population densities of Acroporidae have dramatically declined in the Caribbean Sea. Quantitative censuses of Acroporidae provide information on the number of colonies (i.e. ramets), but not on the number of genetically distinct individuals (i.e. genets). In this context, the aim of our study was to provide an overview of the genetic status of Acropora populations in Guadeloupe by examining the genotypic richness of Acropora palmata and Acropora cervicornis. Using 14 microsatellite loci, we found extremely low genotypic richness for both species from Caye-a`-Dupont reef (i.e. 0.125 for A. palmata and nearly zero for A. cervicornis). Because genetic diversity contributes to the ability of organisms to evolve and adapt to new environmental conditions, our results are alarming in the context of ongoing global warming as long periods of clonal growth without sexual recruitment may lead to the extinction of these populations. Additional keywords: genotypic richness, Acroporidae, microsatellites, Caribbean Sea. Received 27 June 2014, accepted 5 November 2014, published online 19 March 2015 Introduction censuses of acroporid densities report on the number of ramets Stony corals of the Acroporidae (Class Anthozoa, Order Scler- (i.e.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • SEDIMENTARY FRAMEWORK of Lmainland FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA
    GREAT BARRIER REEF MARINE PARK AUTHORITY TECHNICAL MEMORANDUM GBRMPA-TM-14 SEDIMENTARY FRAMEWORK OF lMAINLAND FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA D.P. JOHNSON and RM.CARTER Department of Geology James Cook University of North Queensland Townsville, Q 4811, Australia DATE November, 1987 SUMMARY Mainland fringing reefs with a diverse coral fauna have developed in the Cape Tribulation area primarily upon coastal sedi- ment bodies such as beach shoals and creek mouth bars. Growth on steep rocky headlands is minor. The reefs have exten- sive sandy beaches to landward, and an irregular outer margin. Typically there is a raised platform of dead nef along the outer edge of the reef, and dead coral columns lie buried under the reef flat. Live coral growth is restricted to the outer reef slope. Seaward of the reefs is a narrow wedge of muddy, terrigenous sediment, which thins offshore. Beach, reef and inner shelf sediments all contain 50% terrigenous material, indicating the reefs have always grown under conditions of heavy terrigenous influx. The relatively shallow lower limit of coral growth (ca 6m below ADD) is typical of reef growth in turbid waters, where decreased light levels inhibit coral growth. Radiocarbon dating of material from surveyed sites confirms the age of the fossil coral columns as 33304110 ybp, indicating that they grew during the late postglacial sea-level high (ca 5500-6500 ybp). The former thriving reef-flat was killed by a post-5500 ybp sea-level fall of ca 1 m. Although this study has not assessed the community structure of the fringing reefs, nor whether changes are presently occur- ring, it is clear the corals present today on the fore-reef slope have always lived under heavy terrigenous influence, and that the fossil reef-flat can be explained as due to the mid-Holocene fall in sea-level.
    [Show full text]
  • Taxonomy and Phylogenetic Relationships of the Coral Genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae)
    Contributions to Zoology, 83 (3) 195-215 (2014) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae) Roberto Arrigoni1, 7, Zoe T. Richards2, Chaolun Allen Chen3, 4, Andrew H. Baird5, Francesca Benzoni1, 6 1 Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy 2 Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia 3Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan 4 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan 5 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 6 Institut de Recherche pour le Développement, UMR227 Coreus2, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia 7 E-mail: [email protected] Key words: COI, evolution, histone H3, Lobophyllia, Pacific Ocean, rDNA, Symphyllia, systematics, taxonomic revision Abstract Molecular phylogeny of P. rowleyensis and P. vitiensis . 209 Utility of the examined molecular markers ....................... 209 Novel micromorphological characters in combination with mo- Acknowledgements ...................................................................... 210 lecular studies have led to an extensive revision of the taxonomy References ...................................................................................... 210 and systematics of scleractinian corals. In the present work, we Appendix .......................................................................................
    [Show full text]
  • The Reproduction of the Red Sea Coral Stylophora Pistillata
    MARINE ECOLOGY PROGRESS SERIES Vol. 1, 133-144, 1979 - Published September 30 Mar. Ecol. Prog. Ser. The Reproduction of the Red Sea Coral Stylophora pistillata. I. Gonads and Planulae B. Rinkevich and Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University. Tel Aviv. Israel ABSTRACT: The reproduction of Stylophora pistillata, one of the most abundant coral species in the Gulf of Eilat, Red Sea, was studied over more than two years. Gonads were regularly examined using histological sections and the planula-larvae were collected in situ with plankton nets. S. pistillata is an hermaphroditic species. Ovaries and testes are situated in the same polyp, scattered between and beneath the septa and attached to them by stalks. Egg development starts in July preceding the spermaria, which start to develop only in October. A description is given on the male and female gonads, their structure and developmental processes. During oogenesis most of the oocytes are absorbed and usually only one oocyte remains in each gonad. S. pistillata broods its eggs to the planula stage. Planulae are shed after sunset and during the night. After spawning, the planula swims actively and changes its shape frequently. A mature planula larva of S. pistillata has 6 pairs of complete mesenteries (Halcampoides stage). However, a wide variability in developmental stages exists in newly shed planulae. The oral pole of the planula shows green fluorescence. Unique organs ('filaments' and 'nodules') are found on the surface of the planula;
    [Show full text]
  • Coral Health and Disease in the Pacific: Vision for Action
    IV. STATE OF KNOWLEDGE IN THE PACIFIC—WHAT DO WE KNOW AND WHAT HAVE WE LEARNED? OVERVIEW OF ISSUES UNIQUE TO THE PACIFIC: BIOLOGICAL & SOCIAL PERSPECTIVES Michael J. Gawel Guam EPA 120 Bengbing St. Y-Papao Dededo, GU 96929 [email protected] Pacific Islands The term “Pacific Islands” in the context of this paper arbitrarily refers to those tropical islands of the central and western Pacific Ocean which support shallow hermatypic coral reefs, but excluding the Hawaiian Archipelago, which is covered in other papers. The tropical Pacific Island nations and territories all support coral reefs and, no doubt, harbor coral diseases, although these have not been scientifically documented in many of the islands. In fact, as part of the U.S. National Action Plan to Conserve Coral Reefs, surveys in 2002 and 2004 of coral reef academic scientists, resource managers, government agencies and NGOs recorded that in the U.S. Pacific islands they perceived “no threat” from coral disease, although American Samoa registered an increase to perception of “moderate threat” in the 2004 survey (Waddell, 2005). This lack of concern partially reflects a lack of information on the status of diseases in many islands. Wilkinson (2004, p. 405) notes that in American Samoa and Micronesia “Coral bleaching and disease were either rare or undocumented in 1994, but are now clearly evident and considered a serious threat to many reefs in the region.” The Pacific island coral reefs range from veneers on newly emergent volcanic islands, to platform-like fringing reefs, to barrier reefs with lagoons, to atolls, and include non- emergent isolated banks.
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Composition and Ecology of Deep-Water Coral Associations D
    HELGOLK---~DER MEERESUNTERSUCHUNGEN Helgoltinder Meeresunters. 36, 183-204 (1983) Composition and ecology of deep-water coral associations D. H. H. Kfihlmann Museum ffir Naturkunde, Humboldt-Universit~t Berlin; Invalidenstr. 43, DDR- 1040 Berlin, German Democratic Republic ABSTRACT: Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity deter- mines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechani- cal factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean. INTRODUCTION Considerable attention has been paid to shallow-water coral associations since the first half of this century (Duerden, 1902; Mayer, 1918; Umbgrove, 1939). Detailed investigations at depths down to 20 m became possible only through the use of autono- mous diving apparatus.
    [Show full text]
  • S Sout Co Ther Onse Rn L Erva Leyt Atio Te Co on P Oral Proj L Re Ect
    Souther n Leyte Coral Reef Conservation Project Results of Community and Scientific Work January 2006 – July 2007 Elizabeth House, 39 York Road, London SE1 7NJ, United Kingdom www.coralcay.org [email protected] Tel: +44 (0)20 7620 1411 Fax: +44 (0)20 7921 0469 CORAL CAY CONSERVATION Effective coastal zone management, including CCC has been successfully running volunteer conservation of coral reefs, requires a holistic based conservation programmes in and multi‐sectoral approach, which is often a developing countries over the past 20 years highly technical and costly process and one with notable conservation successes in Belize that many developing countries cannot (formation of the Belize Reef Marine Park and adequately afford. With appropriate training, World Heritage Site) and the Philippines non‐specialist volunteer divers are able to (creation of the Danjugan Island Marine provide useful data for coastal zone Reserve in Negros Occidental). management at little or no cost to the host country (Hunter and Maragos, 1992; Mumby et al., 1995; Wells, 1995; Darwall and Dulvy, 1996; Erdmann et al., 1997). This technique has been pioneered and successfully applie by Coral Cay Conservation (CCC), a British not‐ for‐profit organisation. Founded in 1986, CCC is dedicated to ‘providing resources to protect livelihoods and alleviate poverty through the protection, restoration and sustainable use of coral reefs and tropical forests’. CCC works in collaboration with government and non‐governmental organisations within a host country and does not charge that country for the services provided. CCC is primarily self‐financed through a pioneering volunteer participatory scheme whereby international volunteers are given the opportunity to join a phase of each project in return for a financial contribution towards the project costs.
    [Show full text]
  • Pleistocene Reefs of the Egyptian Red Sea: Environmental Change and Community Persistence
    Pleistocene reefs of the Egyptian Red Sea: environmental change and community persistence Lorraine R. Casazza School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco ABSTRACT The fossil record of Red Sea fringing reefs provides an opportunity to study the history of coral-reef survival and recovery in the context of extreme environmental change. The Middle Pleistocene, the Late Pleistocene, and modern reefs represent three periods of reef growth separated by glacial low stands during which conditions became difficult for symbiotic reef fauna. Coral diversity and paleoenvironments of eight Middle and Late Pleistocene fossil terraces are described and characterized here. Pleistocene reef zones closely resemble reef zones of the modern Red Sea. All but one species identified from Middle and Late Pleistocene outcrops are also found on modern Red Sea reefs despite the possible extinction of most coral over two-thirds of the Red Sea basin during glacial low stands. Refugia in the Gulf of Aqaba and southern Red Sea may have allowed for the persistence of coral communities across glaciation events. Stability of coral communities across these extreme climate events indicates that even small populations of survivors can repopulate large areas given appropriate water conditions and time. Subjects Biodiversity, Biogeography, Ecology, Marine Biology, Paleontology Keywords Coral reefs, Egypt, Climate change, Fossil reefs, Scleractinia, Cenozoic, Western Indian Ocean Submitted 23 September 2016 INTRODUCTION Accepted 2 June 2017 Coral reefs worldwide are threatened by habitat degradation due to coastal development, 28 June 2017 Published pollution run-off from land, destructive fishing practices, and rising ocean temperature Corresponding author and acidification resulting from anthropogenic climate change (Wilkinson, 2008; Lorraine R.
    [Show full text]