CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Status of Alcyonacean Corals Along Tuticorin Coast of Gulf of Mannar, Southeastern India
Indian Journal of Geo-Marine Sciences Vol. 43(4), April 2014, pp. 666-675 Status of Alcyonacean corals along Tuticorin coast of Gulf of Mannar, Southeastern India S. Rajesh, K. Diraviya Raj, G. Mathews, T. Sivaramakrishnan & J.K. Patterson Edward Suganthi Devadason Marine Research Institute 44-Beach Road, Tuticorin – 628 001, Tamil Nadu, India [E-mail: [email protected]] Received 28 November 2012; revised 7 December 2012 In this study, the assessment of alcyonaceans was conducted in Tuticorin coast of the Gulf of Mannar during the period between 2010 and 2012 in 5 locations; Vaan, Koswari, Kariyachalli and Vilanguchalli islands and mainland Punnakayal patch reef. Average alcyonacean coral cover in Tuticorin coast was 6.76% during 2011-12 which was 5.61% during 2010- 2011. Percentage cover of alcyonacean corals increased in all the study locations; Kariyachalli 12.04 to 13.96%; Vilanguchalli 8.94 to 10.23%; Koswari 1.6 to 3.69; Vaan 0.53 to 0.72; mainland Punnakayal patch reef 4.95 to 5.21% was documented. In total, 15 species from 7 genera were recorded during the study period. Though anthropogenic threats in Tuticorin coast are comparatively high, the abundance of alcyonacean corals has increased considerably showing their resilience and adaptability. [Keywords: Alcyonacean corals, Status, Diversity, Tuticorin, Gulf of Mannar] Introduction experience all the natural and anthropogenic threats. Alcyonacean corals (soft corals and gorgonians) Reef ecosystems of Gulf of Mannar are heavily are modular cnidarians composed of polyps that stressed due to various human induced threats like always have eight tentacles and are oftentimes destructive and over fishing practices, coral mining, connected by vessels classified under subclass domestic and industrial pollution, seaweed and other Octocorallia while hard corals have six tentacles resource collection in reef areas and invasion of (which are hexa corals). -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Performance Report-2010-English
1 2 List of Tables Page Table 1.1: Special Project Proposals Qualified for Funding 5 Table 1.2: Progress of Action Plan Activities in 2010. 6 Table 2.1: Rehabilitation and Construction of Water Bodies in 2010 7 Table 2.2: Rehabilitation of PA Road Network in 2010 8 Table 2.3: Survey and Demarcation of Protected Area Boundaries in 2010. 9 Table 2.4: Sign Boards Established in 2010 10 Table 2.5: Management of Grasslands in Wildlife Regions in 2010 11 Table 2.6: Removal of Invasive Species in 2010 11 Table 2.7: Maintenance of Fire Belts in 2010 11 Table 2.8: Wildlife Conservation Activities under Moragahakanda Project in 2010 12 Table 2.9: Wildlife Conservation Activities under Weheragala Project in 2010 12 Table 3.1: Number of Cases Prosecuted in 2010 14 Table 3.2: Progress of Action Plan Activities for 2010 15 Table 4.1: Regional Distribution of Elephant Deaths from 2006-2010 16 Table 4.2: Regional Distribution of Human Deaths 17 Table 4.3: Regional Distribution of Injuries to Human due to Elephant Attacks (2006-2010) 18 Table 4.4: Regional Distribution of Property Damages (2006-2010) 19 Table 4.5: New Electric Fences erected in 2010 21 Table 4.6: Procurement of Thunder Flares and Serphent Flares in 2010 22 Table 4.7: Distribution of the Thunder Flares and Serphent Flares in 2010 22 Table 4.8: Compensation Paid in 2010 22 Table 4.9: Capture and Translocation of Elephants in 2010 23 Table 4.10: Elephant Drives in 2010 24 Table 4.11: Gajamithuro Project – Progress in 2010 24 Table 5.1: Research Studies Undertaken by DWC Staff in 2010 26 Table 5.2: Collaborative Research Projects for 2010 27 Table 5.3: Short-term Special Training Programmes Conducted for Wildlife Officers in 2010 29 Table 5.4 : Regular Training Programmes Conducted at NWTRC in 2010 30 Table 5.5 Awareness programmes conducted by NWTRC 31 Table 5.6 Financial Progress of NWTRC 31 Table 5.7: Foreign Training Programmes Participated by Wildlife Officers in 2010 32 Table 5.8: Seminars, Exhibitions and Awareness Programmes Conducted in 2010. -
Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick -
2.02 Rajasuriya 2008
ARJAN RAJASURIYA National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, Sri Lanka [email protected]; [email protected] fringing and patch reefs (Swan, 1983; Rajasuriya et al., 1995; Rajasuriya & White, 1995). Fringing coral reef Selected coral reefs were monitored in the northern, areas occur in a narrow band along the coast except in western and southern coastal waters of Sri Lanka to the southeast and northeast of the island where sand assess their current status and to understand the movement inhibits their formation. The shallow recovery processes after the 1998 coral bleaching event continental shelf of Gulf of Mannar contains extensive and the 2004 tsunami. The highest rate of recovery coral patch reefs from the Bar Reef to Mannar Island was observed at the Bar Reef Marine Sanctuary where (Rajasuriya, 1991; Rajasuriya, et al. 1998a; Rajasuriya rapid growth of Acropora cytherea and Pocillopora & Premaratne, 2000). In addition to these coral reefs, damicornis has contributed to reef recovery. which are limited to a depth of about 10m, there are Pocillopora damicornis has shown a high level of offshore coral patches in the west and east of the recruitment and growth on most reef habitats island at varying distances (15 -20 km) from the including reefs in the south. An increase in the growth coastline at an average depth of 20m (Rajasuriya, of the calcareous alga Halimeda and high levels of 2005). Sandstone and limestone reefs occur as sedimentation has negatively affected some fringing discontinuous bands parallel to the shore from inshore reefs especially in the south. Reef surveys carried out areas to the edge of the continental shelf (Swan, 1983; for the first time in the northern coastal waters around Rajasuriya et al., 1995). -
What and Where Are the Coral Reefs?
Coral Forest Teacher’s Guide What and Where are the Coral Reefs? What and Where are the Coral Reefs? Coral reefs first formed more than 500 million years space. Located along the northeast coast of Australia, ago in warm tropical climates, and since that time it measures 1,240 miles (2,000km) in length. they have successfully developed and supported a tremendous array of plant and animal life. Covering THE CORAL BODY less than 0.2% of the ocean floor, it is estimated that The body of a coral animal is called the polyp, a hollow coral reefs contain approximately 25% of the ocean’s sac-like structure that is smaller than a common pencil species. Approximately 5,000 species of reef fish eraser. At its free end is a mouth surrounded by have been identified, and more than 2,500 species tentacles, and inside the body is a stomach. The sticky of coral, of which almost 1,000 are reef-building hard tentacles contain harpoon-like stinging structures, corals. About 4,000 species of mollusks alone live called nematocysts, that enable the polyp to gather on the Great Barrier Reef in Australia. This vast food by paralyzing its passing prey. The tentacles then diversity of life has given coral reefs the name deposit the food in the mouth where it passes down “rainforests of the sea.” Rainforests, which are habitat into the stomach. Nutrients are absorbed from the for more than 30 million insects, have a greater food and any solid waste materials are passed back number of species, however coral reefs have a larger out through the mouth. -
EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands -
Black Coral: History Ofa Sustainable Fishery in Hawai'i1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa Black Coral: History ofa Sustainable Fishery in Hawai'i1 Richard W Grigg 2 Abstract: The black coral fishery in Hawai'i has been sustainable for the past 40 yr. The fishery began in 1958, shortly after its discovery off Lahaina, Maui, by Jack Ackerman and Larry Windley, who later formed the company Maui Divers of Hawaii. Since that time, the black coral jewelry industry has gradually expanded and is valued in Hawai'i today at about $15 million at the retail level. In the 1970s, studies ofthe population dynamics of the major species established growth, recruitment, and mortality rates and led to the development of man agement guidelines including recommendations for a minimum size and maxi mum sustained yield. Results of a recent survey in 1998, reported in this paper, show that rates of recruitment and growth are near steady state and appear to account for the long-term stability of the fishery. However, recent technological advances and potential increases in demand could lead to increased rates of harvest. Should this happen, more stringent regulations may be required to avoid overexploitation of the resource. THIS PAPER OUTLINES the history of the 4.8 km west of Lahaina in the middle of the black coral fishery in Hawai'i and reports the 'Au'au Channel between Maui and Lana'i at results of a recent survey of the Maui black depths of 30-90 m (Figure 1). -
Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C. -
Damage on South African Coral Reefs and an Assessment of Their Sustainable Diving Capacity Using a Fisheries Approach
BULLETIN OF MARINE SCIENCE, 67(3): 1025–1042, 2000 CORAL REEF PAPER DAMAGE ON SOUTH AFRICAN CORAL REEFS AND AN ASSESSMENT OF THEIR SUSTAINABLE DIVING CAPACITY USING A FISHERIES APPROACH Michael H. Schleyer and Bruce J. Tomalin ABSTRACT Coral reefs in a marine reserve at Sodwana Bay (27°30'S) make it a premier dive resort. Corals are at the southern limits of their African distribution on these reefs which are dominated by soft corals. The coastline is exposed and turbulent. An assessment of the degree to which sport diving damages the reefs is needed for their management. This study showed that recognizable diver damage is generally concentrated in heavily dived areas. This damage and that of unknown cause probably attributable to divers exceeded natural damage on the reefs, despite the normally rough seas. Fishing line discarded in angling areas also caused considerable damage by tangling around branching corals which become algal fouled and die. Heaviest damage was caused in isolated areas by a minor crown-of-thorns outbreak. A linear regression indicated that 10% diver damage occurs at 9000 dives per dive site p.a. Taking uncertainty into account, a precautionary limit of 7000 dives per dive site p.a. was recommended. Further recommendations are that the reefs be zoned in terms of their sensitivity to diver damage, depth and use by divers according to qualification, and a ban be placed on the use of diving gloves to reduce handling of the reefs. The complexity and beauty of coral reefs make them an attractive and valuable re- source for ecotourism (Davis and Tisdell, 1995). -
(Anthozoa) from the Lower Oligocene (Rupelian) of the Eastern Alps, Austria
TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (3), 2020, 319-336. Modena C N O A S S. P. I. Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria Rosemarie Christine Baron-Szabo* & Diethard Sanders R.C. Baron-Szabo, Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington DC, 20013- 7012 USA; Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany; [email protected]; Rosemarie.Baron- [email protected] *corresponding author D. Sanders, Institut für Geologie, Universität of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; [email protected] KEY WORDS - Scleractinia, taxonomy, paleoecology, paleobiogeography. ABSTRACT - In the Werlberg Member (Rupelian pro parte) of the Paisslberg Formation (Eastern Alps), an assemblage of colonial corals of eleven species pertaining to eleven genera and eleven families was identified:Stylocoenia carryensis, Acropora lavandulina, ?Colpophyllia sp., Dendrogyra intermedia, Caulastraea pseudoflabellum, Hydnophyllia costata, Pindosmilia cf. brunni, Actinacis rollei, Pavona profunda, Agathiphyllia gregaria, and Faksephyllia faxoensis. This is the first Oligocene coral assemblage reported from the Paisslberg Formation (Werlberg Member) of the Eastern Alps, consisting exclusively of colonial forms. The assemblage represents the northernmost fauna of reefal corals reported to date for Rupelian time. The Werlberg Member accumulated during marine transgression onto a truncated succession of older carbonate rocks. The corals grew as isolated colonies and in carpets in a protected shoreface setting punctuated by high-energy events. Coral growth forms comprise massive to sublamellar forms, and branched (dendroid, ramose) forms. -
Coral Reefs Biology 200 Lecture Notes and Study Guide David A
Coral Reefs Biology 200 Lecture Notes and Study Guide David A. Krupp Fall 2001 © Copyright 1 Using this Lecture Outline and Study Guide This lecture outline and study guide was developed to assist you in your studies for this class. It was not meant to replace your attendance and active participation in class, including taking your own lecture notes, nor to substitute for reading and understanding text assignments. In addition, the information presented in this outline and guide does not necessarily represent all of the information that you are expected to learn and understand in this course. You should try to integrate the information presented here with that presented in lecture and in other written materials provided. It is highly recommended that you fully understand the vocabulary and study questions presented. The science of biology is always changing. New information and theories are always being presented, replacing outdated information and theories. In addition, there may be a few errors (content, spelling, and typographical) in this first edition. Thus, this outline and guide may be subject to revision and corrections during the course of the semester. These changes will be announced during class time. Note that this lecture outline and study guide may not be copied nor reproduced in any form without the permission of the author. TABLE OF CONTENTS The Nature of Natural Science ........................................................ 1 The Characteristics of Living Things ............................................... 6 The