Crystalline Architecture and Stratigraphy of Coral Skeletal Density Banding: a Geobiological Record of Changing Coral Reef Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Crystalline Architecture and Stratigraphy of Coral Skeletal Density Banding: a Geobiological Record of Changing Coral Reef Ecology Bucknell University Bucknell Digital Commons Honors Theses Student Theses Spring 2020 Crystalline architecture and stratigraphy of coral skeletal density banding: a geobiological record of changing coral reef ecology Kyle Fouke Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses Part of the Geochemistry Commons, Geology Commons, and the Sedimentology Commons Recommended Citation Fouke, Kyle, "Crystalline architecture and stratigraphy of coral skeletal density banding: a geobiological record of changing coral reef ecology" (2020). Honors Theses. 527. https://digitalcommons.bucknell.edu/honors_theses/527 This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. CRYSTALLINE ARCHITECTURE AND STRATIGRAPHY OF CORAL SKELETAL DENSITY BANDING: A GEOBIOLOGICAL RECORD OF CHANGING CORAL REEF ECOLOGY by Kyle W. Fouke A Thesis Presented to the Faculty of Bucknell University In Partial Fulfillment of the Requirements for the Degree of Bachelors of Science With Honors in Geology April 9, 2020 Approved by: Adviser: Professor Jeffrey M. Trop Second Evaluator: ________________________________________ Professor Carl Kirby iv ACKNOWLEDGEMENTS I would first like to thank my advisor Professor Jeffrey Trop for his guidance and his commitment to advising and teaching me in the classroom and the field throughout my four years at Bucknell. It has allowed me to successfully complete this thesis project and leave Bucknell a confident geologist. I deeply appreciate his willingness to allow me to conduct a research project on coral skeletons. Thank you to the faculty and staff in the Bucknell Department of Geology and Environmental Geosciences. I would especially like to thank Carilee Dill and Brad Jordan as both of them were sturdy resources and supporters for me and work hard every day to make the department run smoothly and effectively. I deeply appreciate Professor Carl Kirby being the second reader for my senior thesis and sharing his expertise about geochemistry for the project and in his classroom. I am very grateful to Professor Mary Beth Gray for letting me be her Teaching Assistant for two semesters to help me become a better teacher in the geosciences. I am grateful for the hard work of Professor Trop, Professor Chris Daniel, Professor Gray, and Professor Ellen Chamberlin in developing multiple spring break trips to the southwest to deepen my understanding of the Earth, become comfortable in geologic field mappings, and giving me the opportunity to make truly meaningful relationships with the faculty and other students. I am very grateful to Professor Kelly Bickel who served as the third reader on my senior thesis honors thesis committee. This project could not have been completed without the help of excellent scientists and researchers outside of the Bucknell campus. Mark Vermeij and the CARMABI staff on Curaçao for their help in my field collection and providing adequate lab space and v dormitories to conduct intense field collection of the coral heads. I also wish to express my sincere thanks and appreciation to Dr. Mayandi Sivaguru (Shiv), Associate Director of the Microscopy and Imaging Core in the Carle R. Woese Institute for Genomic Biology at the University of Illinois Urbana-Champaign. From the bottom of my heart, I deeply appreciate the tremendous effort and support he puts forth for my senior thesis and scientific career. Furthermore, I would like to recognize Dr. Peter Yau who has helped me start my scientific career during the summers I spent in his lab where his mentoring left a wonderful impact on me that has helped me to this day and into the future. Lastly, I could not have completed this project without the incredible people that I have met at Bucknell and my family. Thank you to all the Geopalz who took over room 105 in the basement of O’Leary with me over my four years at Bucknell. Everyone truly made that computer lab feel like home and I will always look back on the wonderful times spent with the geology students. Shout out to Ali, Sam, Sam, and Matylda that came to Bucknell with a declared geology major with me. I will deeply appreciate Evan Filion and Matylda Zaklicki who were the other Sedheads who endured the grind and late nights in O’Leary and on Zoom in completing a senior thesis with me. Our respective senior thesis projects brought us closer together and I wouldn’t want any other people by my side in this endeavor. Additionally, I am very grateful for Matt, John, Andrew, and Evan who have become my brothers after countless of hours of laughter, rain, yelling, joking, and trail singing in the Adirondacks and other wildernesses around the United States. These guys helped me stay sane and pulled me out of continuous work to have some fun during my senior thesis. I am also extremely grateful to Ellie Covert for loving me and continually vi making me be the best person that I can be. She made sure that I got adequate sleep and stayed healthy through the stressful moments and always knew how to cheer me up through the sad times. She was there for me when I needed her and I would not want to share the life-changing experiences and moments that I had with her at Bucknell with anyone else. Thank you, Ellie from the bottom of my heart. And I couldn’t finish this project with the support of my dad, mom, and my sisters Kaitlyn and Courtney. My parents give me unconditional love and support every day that I am truly grateful for as they push me to try my best every day and have shown me the world. Thank you, Dad for being the professor Dad that any kid would want. Thank you, Mom for the passionate support and amazing home cooking as I had to shift to online classes. I am grateful for the goofballs that I call my sisters who always know how to make me laugh and support me through good ol’ fashion family love. This research was supported by grants from the Geological Society of America and the Evolving Earth Foundation. Orbicella annularis specimens were collected under permits issued from the Caribbean Research and Management of Biodiversity (CARMABI) laboratory, and the Curaҫao Ministry of the Health, Environment, and Nature. In addition, I sincerely appreciate receiving the PK2006 O. annularis head sample from the Fouke Research Group at the Carl. R. Woese Institute for Genomic Biology at the University of Illinois Urbana-Champaign. vii TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... iv LIST OF FIGURES ..................................................................................................... ix ABSTRACT ................................................................................................................ 1 INTRODUCTION ....................................................................................................... 2 MATERIALS AND METHODS ................................................................................ 6 Geobiological Setting of Curaçao ...................................................................... 6 Choice of O. annularis as a Model Organism for Studies of CSDB ................. 10 Sample Sites and Field Collection ..................................................................... 11 SCUBA Collection of O. annularis ................................................................... 14 MicroCT and X-Ray Analyses .......................................................................... 12 Quantitative Analyses of CSDB in MicroCT and X-Ray .................................. 15 Thin Sectioning and Optical Microscopy .......................................................... 16 Image Processing ............................................................................................... 17 RESULTS .................................................................................................................... 18 CSDB Stratigraphy ............................................................................................ 18 Comparison of HDB Layers Between Coral Heads .......................................... 28 Original Skeleton Structure and Nomenclature of O. annularis ....................... 34 Thickened Skeletal Walls and Dissepiments within HDBs ............................... 41 DISCUSSION .............................................................................................................. 47 Skeletal Thickening Forms HDBs ..................................................................... 47 viii CSDB Stratigraphy Reflects Coral Ecology ...................................................... 48 Dynamic Coral Processes Obstruct Correlation of CSDB Sequences .............. 53 CONCLUSION ........................................................................................................... 55 BIBLIOGRAPHY ....................................................................................................... 58 ix LIST OF FIGURES Figure 1: Geobiological context of Orbicella annularis. ........................................... 8 Figure 2: MicroCT scans of O. annularis heads. ....................................................... 20 Figure 3: X-radiographs of vertical 5 mm-thick slices of O. annularis heads. .......... 22 Figure 4: Inverted X-radiographs of 5 mm-thick slices
Recommended publications
  • Turbidity Criterion for the Protection of Coral Reef and Hardbottom Communities
    DRAFT Implementation of the Turbidity Criterion for the Protection of Coral Reef and Hardbottom Communities Division of Environmental Assessment and Restoration Florida Department of Environmental Protection October 2020 Contents Section 1. Introduction ................................................................................................................................. 1 1.1 Purpose of Document .......................................................................................................................... 1 1.2 Background Information ..................................................................................................................... 1 1.3 Proposed Criterion and Rule Language .............................................................................................. 2 1.4 Threatened and Endangered Species Considerations .......................................................................... 5 1.5 Outstanding Florida Waters (OFW) Considerations ........................................................................... 5 1.6 Natural Factors Influencing Background Turbidity Levels ................................................................ 7 Section 2. Implementation in Permitting ..................................................................................................... 8 2.1 Permitting Information ........................................................................................................................ 8 2.2 Establishing Baseline (Pre-project) Levels ........................................................................................
    [Show full text]
  • Regional Studies in Marine Science Reef Condition and Protection Of
    Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented.
    [Show full text]
  • Federal Register/Vol. 85, No. 229/Friday, November 27, 2020/Proposed Rules
    76302 Federal Register / Vol. 85, No. 229 / Friday, November 27, 2020 / Proposed Rules DEPARTMENT OF COMMERCE required fields, and enter or attach your Background comments. We listed twenty coral species as National Oceanic and Atmospheric Instructions: You must submit threatened under the ESA effective Administration comments by the above to ensure that October 10, 2014 (79 FR 53851, we receive, document, and consider September 10, 2014). Five of the corals 50 CFR Parts 223 and 226 them. Comments sent by any other occur in the Caribbean: Orbicella [Docket No. 200918–0250] method or received after the end of the annularis, O. faveolata, O. franksi, comment period, may not be Dendrogyra cylindrus, and RIN 0648–BG26 considered. All comments received are Mycetophyllia ferox. The final listing a part of the public record and will determinations were all based on the Endangered and Threatened Species; generally be posted to http:// best scientific and commercial Critical Habitat for the Threatened www.regulations.gov without change. information available on a suite of Caribbean Corals All Personal Identifying Information (for demographic, spatial, and susceptibility example, name, address, etc.) components that influence the species’ AGENCY: National Marine Fisheries vulnerability to extinction in the face of Service (NMFS), National Oceanic and voluntarily submitted by the commenter continuing threats over the foreseeable Atmospheric Administration (NOAA), may be publicly accessible. Do not future. All of the species had undergone Commerce. submit Confidential Business Information or otherwise sensitive or population declines and are susceptible ACTION: Proposed rule; request for protected information. to multiple threats, including: Ocean comments. NMFS will accept anonymous warming, diseases, ocean acidification, ecological effects of fishing, and land- SUMMARY: We, NMFS, propose to comments (enter ‘‘N/A’’ in the required based sources of pollution.
    [Show full text]
  • Orbicella Annularis )
    s e r i a ) d s i e l n s ) b i i r a C i s i a d l / v e u s m L n i e k n t i A i l a w l ( . a M y r Corail étoile massif I O a o r N c e W d s A s (Orbicella annularis ) i e n u d o a l L Classification s p e t Autres noms : Montastraea annularis, s p o r e Boulder star coral (EN) s Phylum Cnidaires ( Cnidaria ) G ( E Classe Anthozoaires ( Anthozoa ) sp èc Ordre Scléractiniaires ( Scleractinia ) e e m gé Famille Merulinidés ( Merulinidae ) arine proté Statut Liste Rouge UICN – mondial : en danger d’extinction I ) a dentification i d 1 e n m i Taille : colonies jusqu’à 3 m d’envergure k i n w ( Teinte : brun-doré à brun-roux ; plus rarement grise ou verte A n extrémité supérieure en forme de A Aspect : colonnes longues et épaisses à l’ O dôme ou nodule ; colonnes reliées entre elles qu’à la base ; l’ensemble forme N des monticules massifs et irréguliers n Squelette (ou corallites) : bouts protubérants de manière plus ou moins marquée ; symétrie radiale ; 2,1-2,7 mm de diamètre ; 24 septes par calice ; petites corallites en forme d’étoile, espacées de 1-1,2 mm les unes des autres ) a i Cycle de vie d 2 e m i n k Longévité : inconnue mais estimée supérieure à 10 ans voir jusqu’à 100 ans pour i w ( une colonie A A n O Maturité sexuelle inconnue mais temps de génération estimé à 10 ans N n Alimentation composés carbonés (photosynthèse des algues symbiotiques) et zooplanctonique n Reproduction : sexuée et asexuée ; hermaphrodisme ; tous les ans entre mi-août et septembre Comportement 1 - Colonie de O.
    [Show full text]
  • Corals Regulate the Distribution and Abundance of Symbiodiniaceae
    www.nature.com/scientificreports OPEN Corals regulate the distribution and abundance of Symbiodiniaceae and biomolecules in response to changing water depth and sea surface temperature Mayandi Sivaguru1,2,11*, Lauren G. Todorov1,3,11, Courtney E. Fouke1,4, Cara M. O. Munro1,5, Kyle W. Fouke1,6, Kaitlyn E. Fouke1,4,7, Melinda E. Baughman1 & Bruce W. Fouke1,2,8,9,10* The Scleractinian corals Orbicella annularis and O. faveolata have survived by acclimatizing to environmental changes in water depth and sea surface temperature (SST). However, the complex physiological mechanisms by which this is achieved remain only partially understood, limiting the accurate prediction of coral response to future climate change. This study quantitatively tracks spatial and temporal changes in Symbiodiniaceae and biomolecule (chromatophores, calmodulin, carbonic anhydrase and mucus) abundance that are essential to the processes of acclimatization and biomineralization. Decalcifed tissues from intact healthy Orbicella biopsies, collected across water depths and seasonal SST changes on Curaçao, were analyzed with novel autofuorescence and immunofuorescence histology techniques that included the use of custom antibodies. O. annularis at 5 m water depth exhibited decreased Symbiodiniaceae and increased chromatophore abundances, while O. faveolata at 12 m water depth exhibited inverse relationships. Analysis of seasonal acclimatization of the O. faveolata holobiont in this study, combined with previous reports, suggests that biomolecules are diferentially modulated during transition from cooler to warmer SST. Warmer SST was also accompanied by decreased mucus production and decreased Symbiodiniaceae abundance, which is compensated by increased photosynthetic activity enhanced calcifcation. These interacting processes have facilitated the remarkable resiliency of the corals through geological time.
    [Show full text]
  • 2.02 Rajasuriya 2008
    ARJAN RAJASURIYA National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, Sri Lanka [email protected]; [email protected] fringing and patch reefs (Swan, 1983; Rajasuriya et al., 1995; Rajasuriya & White, 1995). Fringing coral reef Selected coral reefs were monitored in the northern, areas occur in a narrow band along the coast except in western and southern coastal waters of Sri Lanka to the southeast and northeast of the island where sand assess their current status and to understand the movement inhibits their formation. The shallow recovery processes after the 1998 coral bleaching event continental shelf of Gulf of Mannar contains extensive and the 2004 tsunami. The highest rate of recovery coral patch reefs from the Bar Reef to Mannar Island was observed at the Bar Reef Marine Sanctuary where (Rajasuriya, 1991; Rajasuriya, et al. 1998a; Rajasuriya rapid growth of Acropora cytherea and Pocillopora & Premaratne, 2000). In addition to these coral reefs, damicornis has contributed to reef recovery. which are limited to a depth of about 10m, there are Pocillopora damicornis has shown a high level of offshore coral patches in the west and east of the recruitment and growth on most reef habitats island at varying distances (15 -20 km) from the including reefs in the south. An increase in the growth coastline at an average depth of 20m (Rajasuriya, of the calcareous alga Halimeda and high levels of 2005). Sandstone and limestone reefs occur as sedimentation has negatively affected some fringing discontinuous bands parallel to the shore from inshore reefs especially in the south. Reef surveys carried out areas to the edge of the continental shelf (Swan, 1983; for the first time in the northern coastal waters around Rajasuriya et al., 1995).
    [Show full text]
  • CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
    Coral Reef Degradation in the Indian Ocean Status Report 2005 Coral Reef Degradation in the Indian Ocean. The coastal ecosystem of the Indian Ocean includes environments such as mangroves, sea- Program Coordination grass beds and coral reefs. These habitats are some CORDIO Secretariat Coral Reef Degradation of the most productive and diverse environments Olof Lindén on the planet. They form an essential link in the David Souter Department of Biology and Environmental food webs that leads to fish and other seafood in the Indian Ocean Science providing food security to the local human University of Kalmar population. In addition coral reefs and mangrove 29 82 Kalmar, Sweden Status Report 2005 forests protect the coastal areas against erosion. (e-mail: [email protected], Unfortunately, due to a number of human activi- [email protected]) Editors: DAVID SOUTER & OLOF LINDÉN ties, these valuable environments are now being degraded at an alarming rate. The use of destruc- CORDIO East Africa Coordination Center David Obura tive fishing techniques on reefs, coral mining and P.O. Box 035 pollution are examples of some of these stresses Bamburi, Mombasa, Kenya from local sources on the coral reefs. Climate (e-mail: [email protected], change is another stress factor which is causing [email protected]) additional destruction of the reefs. CORDIO is a collaborative research and CORDIO South Asia Coordination Center development program involving expert groups in Dan Wilhelmsson (to 2004) Status Report 2005 countries of the Indian Ocean. The focus of Jerker Tamelander (from 2005) IUCN (World Conservation Union) CORDIO is to mitigate the widespread degrada- 53 Horton Place, Colombo 7, Sri Lanka tion of the coral reefs and other coastal eco- (e-mail: [email protected]) systems by supporting research, providing knowledge, creating awareness, and assist in CORDIO Indian Ocean Islands developing alternative livelihoods.
    [Show full text]
  • (Anthozoa) from the Lower Oligocene (Rupelian) of the Eastern Alps, Austria
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (3), 2020, 319-336. Modena C N O A S S. P. I. Scleractinian corals (Anthozoa) from the lower Oligocene (Rupelian) of the Eastern Alps, Austria Rosemarie Christine Baron-Szabo* & Diethard Sanders R.C. Baron-Szabo, Department of Invertebrate Zoology, Smithsonian Institution, NMNH, W-205, MRC 163, P.O. Box 37012, Washington DC, 20013- 7012 USA; Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany; [email protected]; Rosemarie.Baron- [email protected] *corresponding author D. Sanders, Institut für Geologie, Universität of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria; [email protected] KEY WORDS - Scleractinia, taxonomy, paleoecology, paleobiogeography. ABSTRACT - In the Werlberg Member (Rupelian pro parte) of the Paisslberg Formation (Eastern Alps), an assemblage of colonial corals of eleven species pertaining to eleven genera and eleven families was identified:Stylocoenia carryensis, Acropora lavandulina, ?Colpophyllia sp., Dendrogyra intermedia, Caulastraea pseudoflabellum, Hydnophyllia costata, Pindosmilia cf. brunni, Actinacis rollei, Pavona profunda, Agathiphyllia gregaria, and Faksephyllia faxoensis. This is the first Oligocene coral assemblage reported from the Paisslberg Formation (Werlberg Member) of the Eastern Alps, consisting exclusively of colonial forms. The assemblage represents the northernmost fauna of reefal corals reported to date for Rupelian time. The Werlberg Member accumulated during marine transgression onto a truncated succession of older carbonate rocks. The corals grew as isolated colonies and in carpets in a protected shoreface setting punctuated by high-energy events. Coral growth forms comprise massive to sublamellar forms, and branched (dendroid, ramose) forms.
    [Show full text]
  • Marine Ecology Progress Series 506:129
    Vol. 506: 129–144, 2014 MARINE ECOLOGY PROGRESS SERIES Published June 23 doi: 10.3354/meps10808 Mar Ecol Prog Ser FREEREE ACCESSCCESS Long-term changes in Symbiodinium communities in Orbicella annularis in St. John, US Virgin Islands Peter J. Edmunds1,*, Xavier Pochon2,3, Don R. Levitan4, Denise M. Yost2, Mahdi Belcaid2, Hollie M. Putnam2, Ruth D. Gates2 1Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA 2Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Kaneohe, HI 96744, USA 3Environmental Technologies, Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand 4Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA ABSTRACT: Efforts to monitor coral reefs rarely combine ecological and genetic tools to provide insight into the processes driving patterns of change. We focused on a coral reef at 14 m depth in St. John, US Virgin Islands, and used both sets of tools to examine 12 colonies of Orbicella (for- merly Montastraea) annularis in 2 photoquadrats that were monitored for 16 yr and sampled genetically at the start and end of the study. Coral cover and colony growth were assessed annu- ally, microsatellites were used to genetically identify coral hosts in 2010, and their Symbiodinium were genotyped using chloroplastic 23S (cloning) and nuclear ITS2 (cloning and pyrosequencing) in 1994 and 2010. Coral cover declined from 40 to 28% between 1994 and 2010, and 3 of the 12 sampled colonies increased in size, while 9 decreased in size. The relative abundance of Symbio- dinium clades varied among corals over time, and patterns of change differed between photo- quadrats but not among host genotypes.
    [Show full text]
  • Sexual Reproduction in the Caribbean Coral Genus Isophyllia (Scleractinia: Mussidae)
    Sexual reproduction in the Caribbean coral genus Isophyllia (Scleractinia: Mussidae) Derek Soto and Ernesto Weil Department of Marine Science, Universidad de Puerto Rico, Recinto de Mayagu¨ez, Mayagu¨ez, Puerto Rico, United States ABSTRACT The sexual pattern, reproductive mode, and timing of reproduction of Isophyllia sinuosa and Isophyllia rigida, two Caribbean Mussids, were assessed by histological analysis of specimens collected monthly during 2000–2001. Both species are simultaneous hermaphroditic brooders characterized by a single annual gametogenetic cycle. Spermatocytes and oocytes of different stages were found to develop within the same mesentery indicating sequential maturation for extended planulation. Oogenesis took place during May through April in I. sinuosa and from August through June in I. rigida. Oocytes began development 7–8 months prior to spermaries but both sexes matured simultaneously. Zooxanthellate planulae were observed in I. sinuosa during April and in I. rigida from June through September. Higher polyp and mesenterial fecundity were found in I. rigida compared to I. sinuosa. Larger oocyte sizes were found in I. sinuosa than in I. rigida, however larger planula sizes were found in I. rigida. Hermaphroditism is the exclusive sexual pattern within the Mussidae while brooding has been documented within the related genera Mussa, Scolymia and Mycetophyllia. This study represents the first description of the sexual characteristics of I. rigida and provides an updated description of I. sinuosa. Subjects Developmental Biology, Marine Biology, Zoology Keywords Caribbean, Mussidae, Coral reproduction, Hermaphroditic, Brooder Submitted 5 October 2015 INTRODUCTION Accepted 7 October 2016 Published 10 November 2016 Reproduction in corals consists of a sequence of events which include: gametogenesis, Corresponding author spawning (broadcasters), fertilization, embryogenesis, planulation (brooders), dispersal, Derek Soto, [email protected] settlement and recruitment (Harrison & Wallace, 1990).
    [Show full text]
  • Coral Spawning Predictions for the Southern Caribbean
    Coral Spawning Predictions for the 2020 Southern Caribbean DAYS AFM 10 11 12 13 10 11 12 13 10 11 12 13 April, May, & June Corals CALENDAR DATE 17-Apr 18-Apr 19-Apr 20-Apr 17-May 18-May 19-May 20-May 15-Jun 16-Jun 17-Jun 18-Jun SUNSET TIME 18:48 18:48 18:48 18:48 18:53 18:53 18:53 18:54 19:01 19:01 19:01 19:02 Latin name Common Name Spawning Window Diploria labyrinthiformis* Grooved Brain Coral 70 min BS-10 min AS 17:40-19:00 17:45-19:05 17:50-19:10 *Monthly "DLAB" spawning has been observed from April to October in Curaçao, Bonaire, the Dominican Republic, and Mexico. We don't yet know if this occurs accross the entire region. New observations are highly encouraged! DAYS AFM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 July Corals CALENDAR DATE 4-Jul 5-Jul 6-Jul 7-Jul 8-Jul 9-Jul 10-Jul 11-Jul 12-Jul 13-Jul 14-Jul 15-Jul 16-Jul 17-Jul SUNSET TIME 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 19:04 Latin name Common Name Spawning Window Diploria labyrinthiformis* Grooved Brain Coral 70 min BS-10 min AS 17:55-19:15 Montastraea cavernosa Great Star Coral 15-165 min AS 19:20-21:50 Colpophyllia natans Boulder Brain Coral 35-110 min AS 19:40-20:55 Pseudodiplora strigosa (Early group) Symmetrical Brain Coral 40-60 min AS 19:45-20:05 Dendrogyra cylindrus Pillar Coral 90-155 min AS 20:35-21:40 Pseudodiplora strigosa (Late group) Symmetrical Brain Coral 220-270 min AS 22:45-23:35 DAYS AFM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 August Corals CALENDAR DATE 3-Aug 4-Aug 5-Aug 6-Aug 7-Aug 8-Aug 9-Aug 10-Aug 11-Aug 12-Aug 13-Aug 14-Aug 15-Aug
    [Show full text]
  • Host Species, Range Extensions, and an Observation of the Mating System of Atlantic Shallow-Water Gall Crabs (Decapoda: Cryptochiridae)
    Bull Mar Sci. 90(4):1001–1010. 2014 coral reef paper http://dx.doi.org/10.5343/bms.2014.1017 Host species, range extensions, and an observation of the mating system of Atlantic shallow-water gall crabs (Decapoda: Cryptochiridae) Department of Marine Zoology, Sancia ET van der Meij Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands. Email: <sancia.vandermeij@ ABSTRACT.—Coral-associated invertebrates dominate naturalis.nl>. the biodiversity of coral reefs. Some of the associations involving symbiotic invertebrates remain unknown or little studied. This holds true even for relatively well- studied coral reefs, like those in the Caribbean Sea. Coral gall crabs (Cryptochiridae), obligate symbionts of stony corals, form a much-overlooked component of coral reef communities. Most recent studies on the Atlantic members of Cryptochiridae have been conducted off Brazil and little recent data have become available from the Caribbean region. During fieldwork off Curaçao (southern Caribbean Sea), eight new host coral species, belonging to four coral families, were recorded for three cryptochirid species. Kroppcarcinus siderastreicola Badaro, Neves, Castro and Johnsson, 2012, previously only known from Brazil, and Opecarcinus hypostegus (Shaw and Hopkins, 1977) are new additions to the fauna of Curaçao. Besides the new hosts and geographic range extensions, a free-living male Troglocarcinus corallicola Verrill, 1908 was observed visiting a female of the same species lodged in her gall in an Orbicella annularis (Ellis and Solander, 1786) colony. This is the first Date Submitted: 5 March, 2014. photodocumented record of the “visiting” mating system in Date Accepted: 3 June, 2014. Available Online: 2 September, 2014.
    [Show full text]