Appendix A: Longitudes and Latitudes of Cities Around the World

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Longitudes and Latitudes of Cities Around the World Appendix A: Longitudes and Latitudes of Cities Around the World City Longitude Latitude Anchorage 149540W61130N Athens 23430E37580N Auckland, NZ 174440E36500S Beijing 116240E39550N Berlin 13230E52310N Buenos Aires 58230W34360S Cairo 31140E30030N Colombo 79510E6560N Dakar 17270W14420N Hong Kong 114100E22170N Honolulu 157500W21190N Istanbul 28570E41010N Jerusalem 35130E31470N Johannesburg 28030E26120S Lima 77020W12030S London 0080W51300N Los Angeles 118150W34030N Mexico City 99080W19260N Moscow 37370E55450N New Delhi 77130E28370N New York 73560W40400N Paris 2210E48510N Rio de Janeiro 43120W22550S Santiago, Chile 70400W33270S Singapore 103500E1170N Sydney 151130E33520S Tehran 51250E35420N Tokyo 139420E35410N © Springer International Publishing AG 2017 217 S. Kwok, Our Place in the Universe, DOI 10.1007/978-3-319-54172-3 Appendix B: Astronomical Measurements Ancient astronomers typically made two types of measurements: position and brightness. Position refers to the angular position of a celestial object on the celestial sphere. Since our view of the sky is two-dimensional, we use the unit of angles to assign the positions of stars. The Babylonian concept of a degree is based on the fact that 1 year has 365 days. Since 365 is close to the nice number 360 which can be divided by 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, etc., astronomers adopted 360 degrees as a full circle and this Babylonian unit is still in use today. Again, since 60 is a good number, we divide a degree into 60 arc minutes, and an arc minute into 60 arc seconds. To get an idea of how large these units are, a one-centimeter coin placed at a distance of 1 km will have an angular size of 2 arc seconds, so one arc second is a very small separation indeed. Since both position and brightness change with time, the measured quantities are tied to time. The natural units of time were day and year. In this book, we discussed the various definitions of these two units (solar day, sidereal day, tropical year, etc.). A solar day is divided into subunits of 24 hours, each hour is divided into 60 minutes, and each minute into 60 seconds. A tropical year, which our calendar is based on, is 365.2422 days. Efforts to make measurements on the third dimension, distance, were restricted to those of the Sun, the Moon, and, much later in modern times, the stars. For objects in the Solar System, a commonly used unit is the astronomical unit (AU), the distance between the Earth and the Sun. The brightness of stars is measured in magnitudes, which is an inverse logarith- mic scale. A brighter star has a smaller magnitude. A star that is 100 times brighter has a magnitude value of 5 smaller. Specifically, the brightness ratio of two stars with a magnitude difference of m is 10(–0.4m). For example, if star A has a magnitude of 2, and star B has a magnitude of 4, then star A is brighter than star B by a factor of 10À0.4(2À4) ¼ 6.3. © Springer International Publishing AG 2017 219 S. Kwok, Our Place in the Universe, DOI 10.1007/978-3-319-54172-3 220 Appendix B: Astronomical Measurements Some of the brightest stars that can be seen in the northern hemisphere are Sirius (α CMa, À1.46 in visual magnitude), Canopus (α Car, À0.72 mag), Arcturus (α Boo, À0.04 mag), Vega (α Lyr, 0.03 mag), Altair (α Aql, 0.77 mag), and Antares (α Sco, 0.96 mag). Appendix C: How Long Does It Take for the Sun to Rise and Set? A popular activity for someone on vacation in a resort location such as Hawaii or Phuket is to watch the Sun setting in the ocean. Watching a brilliant red Sun slowly descend into the green sea from the blue sky can be an amazing experience. This is more dramatic in a near-tropical location because the Sun sets nearly vertically. Although sunset seems to occur quickly, it is long enough for us to enjoy the experience and accurately time it. One can measure the actual time of the Sun’s descent. Go to a western view point where you can see the horizon. Use a stop watch to time the duration between the lowest edge of the Sun touching to the horizon to the moment that it is fully submerged. You can then compare this time with the theoretical expectation. We experience sunrise and sunset because of the rotation of the Earth. It takes 24 hours for the Earth to make one revolution, so the rotational rate of the Earth is 360/24 hours, or 15 degrees per hour, or 4 minutes to cover one degree. We also know that the Sun has an angular size of about half a degree. The time that it takes the Earth to rotate through half of a degree is therefore 2 minutes. However, when one goes to higher latitudes, the time of sunset is no longer given by this theoretical value. The Sun does not set vertically, but instead moves increasingly horizontally with increasing latitude (Fig. 5.2). This means that it will take longer for the upper edge of the Sun to submerge below the horizon. At the latitude of 45, the setting time is 2 minutes and 44 seconds. If one goes to the Arctic Circle on June 21, it will take forever for the Sun to set! Exercise: Take a stop watch or use the stop-watch on your cell phone to time the duration of sunset at your latitude. © Springer International Publishing AG 2017 221 S. Kwok, Our Place in the Universe, DOI 10.1007/978-3-319-54172-3 Appendix D: How Long Is a Day? The concept of “day” is a natural one. On Earth, we experience a cycle of day and night and we organize our activities (work and sleep) around this cycle. In ancient times, once the Sun was down, human activities were severely curtailed due to our limited ability to see our surroundings. Since the introduction of artificial lighting about 100 years ago, the divide between night and day has blurred somewhat but is still a significant part of our lives. How do we measure the beginning and end of this cycle? Since the length of time between the sunrise and sunset varies with the seasons and geographical latitudes, our concept of “one day” must incorporate the total length of time occupied by day and night. Both eastern and western civilizations recognized that the most logical way to define “one day” was the time between noon and next noon (for the definition of noon, see Chap. 2). This definition worked well up to a point. The fact is that this “day”, which astronomers call the “apparent solar day”, can vary by as much as 16 minutes at different times of the year. There are two reasons. One is that the Earth does not follow a circular orbit around the Sun, it is closest to the Sun in January and farthest away in July. This results in a higher orbital velocity in January than in July (Kepler’s second law). On the day that the Earth is closest to the Sun (January 2), the Earth is orbiting at 30.4 km/s, in contrast to 29.4 km/s at the farthest point on July 4. Since the Earth has to turn an extra amount to face the Sun in January in order to compensate for the larger angular distance traveled, the apparent solar day is longer in January than in July. The second reason is that the Earth’s rotational axis is not at right angles to the orbital plane of revolution around the Sun. Together, these two effects cause the length of day to be irregular. Since a non-uniform day is obviously not desirable, astronomers devised a mean solar day that keeps the length of day constant throughout the year. The clock that we keep today has its origin in solar motion but is not strictly tied to it. © Springer International Publishing AG 2017 223 S. Kwok, Our Place in the Universe, DOI 10.1007/978-3-319-54172-3 Appendix E: What Time Is Noon? The obvious answer to this question is “when my watch says 12 o’clock” but this is incorrect. In fact, for most locations on Earth, noon almost never occurs at 12 o’clock. We know that the Sun rises every day, climbs from the horizon, makes its way across the sky, and sets on the opposite horizon. The moment when the Sun is highest in the sky is what we call noon (Chap. 2). By convention, we call this the 12th hour, and the 0th hour is called midnight. Our ancestors already knew that they could determine noon with a sundial. At noon, the shadow of the Sun on the sundial is the shortest. Since the Sun rises in Sydney before it rises in Tokyo or Beijing, clearly the time of noon depends on location. In fact, if you are located on the equator and walk 460 m east, noon will arrive one second earlier. Now let us imagine that we start a journey at noon and travel west. If we travel fast enough (15 degrees of longitude per hour), the Sun will always be at the same highest position. In other words, time is standing still! In fact, some of you may have already experienced this during your airplane travels. When you fly from Bangkok to London during day time, the day seems never-ending. This can be really confusing for the traveler. Just imagine if you were traveling by train and every train station at a different longitude was on a different clock setting.
Recommended publications
  • How Long Is a Year.Pdf
    How Long Is A Year? Dr. Bryan Mendez Space Sciences Laboratory UC Berkeley Keeping Time The basic unit of time is a Day. Different starting points: • Sunrise, • Noon, • Sunset, • Midnight tied to the Sun’s motion. Universal Time uses midnight as the starting point of a day. Length: sunrise to sunrise, sunset to sunset? Day Noon to noon – The seasonal motion of the Sun changes its rise and set times, so sunrise to sunrise would be a variable measure. Noon to noon is far more constant. Noon: time of the Sun’s transit of the meridian Stellarium View and measure a day Day Aday is caused by Earth’s motion: spinning on an axis and orbiting around the Sun. Earth’s spin is very regular (daily variations on the order of a few milliseconds, due to internal rearrangement of Earth’s mass and external gravitational forces primarily from the Moon and Sun). Synodic Day Noon to noon = synodic or solar day (point 1 to 3). This is not the time for one complete spin of Earth (1 to 2). Because Earth also orbits at the same time as it is spinning, it takes a little extra time for the Sun to come back to noon after one complete spin. Because the orbit is elliptical, when Earth is closest to the Sun it is moving faster, and it takes longer to bring the Sun back around to noon. When Earth is farther it moves slower and it takes less time to rotate the Sun back to noon. Mean Solar Day is an average of the amount time it takes to go from noon to noon throughout an orbit = 24 Hours Real solar day varies by up to 30 seconds depending on the time of year.
    [Show full text]
  • Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16
    Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 1 of 137 Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 2 of 137 Exhibit A Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 3 of 137 Exhibit A1 Served via Overnight Mail Name Attention Address 1 Address 2 City State Zip Country Aastha Broadcasting Network Limited Attn: Legal Unit213 MezzanineFl Morya LandMark1 Off Link Road, Andheri (West) Mumbai 400053 IN Abs Global LTD Attn: Legal O'Hara House 3 Bermudiana Road Hamilton HM08 BM Abs-Cbn Global Limited Attn: Legal Mother Ignacia Quezon City Manila PH Aditya Jain S/O Sudhir Kumar Jain Attn: Legal 12, Printing Press Area behind Punjab Kesari Wazirpur Delhi 110035 IN AdminNacinl TelecomunicacionUruguay Complejo Torre De Telecomuniciones Guatemala 1075. Nivel 22 HojaDeEntrada 1000007292 5000009660 Montevideo CP 11800 UY Advert Bereau Company Limited Attn: Legal East Legon Ars Obojo Road Asafoatse Accra GH Africa Digital Network Limited c/o Nation Media Group Nation Centre 7th Floor Kimathi St PO Box 28753-00100 Nairobi KE Africa Media Group Limited Attn: Legal Jamhuri/Zaramo Streets Dar Es Salaam TZ Africa Mobile Network Communication Attn: Legal 2 Jide Close, Idimu Council Alimosho Lagos NG Africa Mobile Networks Cameroon Attn: Legal 131Rue1221 Entree Des Hydrocarbures Derriere Star Land Hotel Bonapriso-Douala Douala CM Africa Mobile Networks Cameroon Attn: Legal BP12153 Bonapriso Douala CM Africa Mobile Networks Gb,
    [Show full text]
  • State of the Climate in 2009
    STATE OF THE CLIMATE IN 2009 D.S. Arndt, M.O. Baringer and M.R. Johnson, Eds. Associate Eds. L.V. Alexander, H.J. Diamond, R.L. Fogt, J.M. Levy, J. Richter-Menge, P.W. Thorne, L.A. Vincent, A.B. Watkins and K.M. Willett (a) Yearly mean sea surface temperature anomalies (SSTA) in 2009 and (b) SSTA differences between 2009 and 2008. Anomalies are defi ned as departures from the 1971-2000 climatology. Refer to Chapter 3, Figure 3.1 for a more detailed description. Special Supplement to the Bulletin of the American Meteorological Society Vol. 91, No. 7, July 2010 Unauthenticated | Downloaded 10/10/21 06:29 AM UTC STATE OF THE CLIMATE IN 2009 Unauthenticated | Downloaded 10/10/21 06:29 AM UTC HOW TO CITE THIS DOCUMENT Citing the complete report: Arndt, D. S., M. O. Baringer, and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1–S224. Citing a chapter (example): Diamond, H. J., Ed., 2010: The tropics [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S79–S106. Citing a section (example): Halpert, M., G. D. Bell, and M. L’Heureux, 2010: ENSO and the Tropical Pacific [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S79–S82. Unauthenticated | Downloaded 10/10/21 06:29 AM UTC E DITOR & AUTHOR AffILIATIONS (alphabetical by name) EDITORS Attaher, Samar M., Agricultural Research Center, MALR, Alexander, Lisa V., Climate Change Research Centre, Universi- Cairo, Egypt ty of New South Wales, Sydney, New South Wales, Australia Baez, Julian, DMH-DINAC / CTA-UCA, Asunción,
    [Show full text]
  • The History of Time and Leap Seconds
    The History of Time and Leap seconds P. Kenneth Seidelmann Department of Astronomy University of Virginia Some slides thanks to Dennis D. McCarthy Time Scales • Apparent Solar Time • Mean Solar Time • Greenwich Mean Time (GMT) • Ephemeris Time (ET) • Universal Time (UT) • International Atomic Time (TAI) • Coordinated Universal Time (UTC) • Terrestrial Time (TT) • Barycentric Coordinate Time (TCB) • Geocentric Coordinate Time (TCG) • Barycentric Dynamical Time (TDB) Apparent Solar Time Could be local or at some special place like Greenwich But So… Length of the • We need a Sun apparent solar that behaves day varies during the year because Earth's orbit is inclined and is really an ellipse. Ptolemy (150 AD) knew this Mean Solar Time 360 330 300 270 240 210 Equation of Time 180 150 Day of the Year Day 120 90 60 30 0 -20 -15 -10 -5 0 5 10 15 20 Mean minus Apparent Solar Time - minutes Astronomical Timekeeping Catalogs of Positions of Celestial Objects Predict Time of an Event, e.g. transit Determine Clock Corrections Observations Observational Residuals from de Sitter Left Scale Moon Longitude; Right Scale Corrections to Time Universal Time (UT) • Elementary conceptual definition based on the diurnal motion of the Sun – Mean solar time reckoned from midnight on the Greenwich meridian • Traditional definition of the second used in astronomy – Mean solar second = 1/86 400 mean solar day • UT1 is measure of Earth's rotation Celestial Intermediate Pole angle – Defined • By observed sidereal time using conventional expression – GMST= f1(UT1) •
    [Show full text]
  • Time, Space, and Astronomy in Angkor Wat
    Time, Space, and Astronomy in Angkor Wat Subhash Kak Department of Electrical & Computer Engineering Louisiana State University Baton Rouge, LA 70803-5901, USA FAX: 225.388.5200; Email: [email protected] August 6, 2001 Introduction Angkor Wat's great Hindu temple has been called one of mankind's most impressive and enduring architectural achievements. It was built by the Khmer Emperor S¯uryavarman II, who reigned during AD 1113-50. One of the many temples built from AD 879 - 1191, it arose when the Khmer civilization was at the height of its power. Although Vis.n. u is its main deity, the temple, through its sculpture, pays homage to all the Vedic gods and goddesses including Siva.´ Figure 1 presents a plan of the temple complex upto the moat and Figure 2 presents a plan of its inner three galleries. The astronomy and cosmology underlying the design of this temple was extensively researched in the 1970s.1 An update of this research was recently presented by Eleanor Mannikka.2 Basically, it was found that the temple served as a practical observatory where the rising sun was aligned on the equinox and solstice days with the western entrance of the temple, and many sighting lines for seasonally observing the risings of the sun and the moon were identified, some of which are shown in Figure 3. Using a survey by Nafilyan3 and converting the figures to the Cambodian cubit or hat (0.43545 m), it was demonstrated that certain measurements of the temple record calendric and cosmological time cycles. 1 The most impressive aspect of this representation is that it occurs both at the level of the part as well as the whole in a recursive fashion, mirroring the Vedic idea of the microcosm symbolizes the macrocosm at various levels of expressions.
    [Show full text]
  • IAU) and Time
    The relationships between The International Astronomical Union (IAU) and time Nicole Capitaine IAU Representative in the CCU Time and astronomy: a few historical aspects Measurements of time before the adoption of atomic time - The time based on the Earth’s rotation was considered as being uniform until 1935. - Up to the middle of the 20th century it was determined by astronomical observations (sidereal time converted to mean solar time, then to Universal time). When polar motion within the Earth and irregularities of Earth’s rotation have been known (secular and seasonal variations), the astronomers: 1) defined and realized several forms of UT to correct the observed UT0, for polar motion (UT1) and for seasonal variations (UT2); 2) adopted a new time scale, the Ephemeris time, ET, based on the orbital motion of the Earth around the Sun instead of on Earth’s rotation, for celestial dynamics, 3) proposed, in 1952, the second defined as a fraction of the tropical year of 1900. Definition of the second based on astronomy (before the 13th CGPM 1967-1968) definition - Before 1960: 1st definition of the second The unit of time, the second, was defined as the fraction 1/86 400 of the mean solar day. The exact definition of "mean solar day" was left to astronomers (cf. SI Brochure). - 1960-1967: 2d definition of the second The 11th CGPM (1960) adopted the definition given by the IAU based on the tropical year 1900: The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 12 hours ephemeris time.
    [Show full text]
  • Properties Available for Claim by County
    01/27/2020 Properties Available For Claim By County LAUDERDALE Property ID Owner Name Street 1 Street 2 City ST ZIP Amount Shares 3453785 1 TG CONSULTING LLC 2210 9TH ST MERIDIAN MS 39301 $82.93 0.00 3562871 1ST FRANKLIN FINANCIAL 8841 4820 POPLAR SPRINGS DR SUITE C P O BOX 3155 MERIDIAN MS 39305 $72.00 0.00 1991378 39 AUTO SALES LLC 3125 5TH AVE MERIDIAN MS 39301 $70.47 0.00 2025194 5TH STREET BAPTIST CHURCH 2530 HIGHWAY 45 N MERIDIAN MS 39301-1765 $279.20 0.00 2025194 5TH STREET BAPTIST CHURCH 2530 HIGHWAY 45 N MERIDIAN MS 39301-1765 $279.20 0.00 1906634 8TH STR FOOD MART 2816 8TH STR MERIDIAN MS 39301 $270.64 0.00 1535198 A & B ELECTRIC CO INC EMPLOYEE PROFIT SHARC/O JAMES ALEXANDER & HENRYP BURNS O BOX SR2808 TTE MERIDIAN MS 39302- $352.00 0.00 4091516 A & J RACING AND REPAIRS 2915 16TH STE 5 MERIDIAN MS 39301 $61.08 0.00 3101543 A 1 AUTO GLASS 420 FRONT STREET EXT MERIDIAN MS 39301 $444.17 0.00 4030103 A A XPRESS 02 1500 HIGHWAY 11S MERIDIAN MS 39307 $99.00 0.00 2359212 A D UNKNOWN PO BOX 5002 MERIDIAN MS 39301 $165.34 0.00 1836153 A G EDWARDS AND SONS INC 2101 5TH ST MERIDIAN MS 39301-5131 $60.25 0.00 1795701 A G EDWARDS SONS INC PO BOX 234 MARION MS 39342 $27.74 7.00 1795702 A G EDWARDS SONS INC PO BOX 234 MARION MS 39342 $11.92 3.00 2213824 A PLUS LAWN C/O MARLON SPARKS 3617 39TH ST MERIDIAN MS 39305 $340.00 0.00 1701742 A TOUCH OF ELEGANCE 900 23RD AVE MERIDIAN MS 39301-5017 $1,500.00 0.00 1488173 A-20 4640 POPLAR SPRINGS DR MERIDIAN MS 39305-2623 $66.31 10.00 3854827 A1 AUTO GLASS 420 FRONT ST EXT MERIDIAN MS 39301 $123.27 0.00
    [Show full text]
  • Winter Solstice (Shortest Track), and the Spring and Fall Equinoxes (Medium Track)
    Solstice and Equinox (“Suntrack”) Season Model Philip Scherrer & Deborah Scherrer, Stanford Solar Center Introduction This physical model simulates the Sun’s tracks across the sky at summer solstice (longest track), winter solstice (shortest track), and the spring and fall equinoxes (medium track). A bead simulates the Sun moving from rising along the eastern horizon to setting on the western. The bead can be moved from track to track to demonstrate the solstices and equinoxes. The model is made to accurately represent the user’s latitude. Many people are confused about the meaning of solstices and equinoxes. Verbal descriptions are often inadequate because they are difficult to envision or overly technical. Imagery is helpful, but some have trouble understanding the perspective of the imagery. This physical model was developed (over years) to enhance the teaching of the solstice and equinox concepts, as well as being helpful in understanding solar alignments of cultural and archaeoastronomy sites. A quote from Cidney Webster, National Park Service: My program was a guided walk through the park and the topic was the winter solstice. ... I copied a diorama used by Dr. and Mrs. Scherrer during the training that demonstrated the Sun's position in the sky at different times of the year. This became my most effective teaching tool. Everyone loved the diorama!" Includes instructions for a simple, low-cost version made from paper plates and pipe cleaners. © Stanford University; permission to use granted for educational & noncommercial purposes
    [Show full text]
  • 32 CFR Ch. V (7–1–03 Edition)
    § 578.43 32 CFR Ch. V (7–1–03 Edition) (d) Service star—(1) Requirements Pos- pended by a ring from a silk moire rib- session of a foreign service clasp is de- bon 13⁄8 inches in length and 13⁄8 inches noted by the wearing of a bronze serv- in width composed of a blue stripe ice star on the service ribbon. (3⁄16 inch), white stripe (1⁄16 inch), black (2) Description. See § 578.40(d)(2). stripe (1⁄16 inch), red stripe (1⁄16 inch), 1 [13 FR 6800, Nov. 19, 1948, as amended at 17 white stripe ( ⁄16 inch), blue stripe 3 1 FR 912, Jan. 31, 1952] ( ⁄16 inch), dark blue stripe ( ⁄24 inch), white stripe (1⁄24 inch), red stripe § 578.43 Women’s Army Corps Service (1⁄24 inch), blue stripe (3⁄16 inch), white Medal. stripe (1⁄16 inch), red stripe (1⁄16 inch), Established by Executive Order 9365 black stripe (1⁄16 inch), white stripe (3 CFR, 1943 Cum. Supp.) (1⁄16 inch), and blue stripe (3⁄16 inch). (a) Description. The medal of bronze is (b) Requirements. Service within the 11⁄4 inches in diameter. On the obverse American Theater between December 7, is the head of Pallas Athene in profile 1941, and March 2, 1946, under any of facing dexter, superimposed on a the following conditions: sheathed sword crossed with oak leaves (1) On permanent assignment outside and a palm branch within a circle com- the continental limits of the United posed of the words ‘‘Women’s’’ in the States.
    [Show full text]
  • And Better Science in Antarctica Through Increased Logistical Effectiveness
    MORE AND BETTER SCIENCE IN ANTARCTICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS Report of the U.S. Antarctic Program Blue Ribbon Panel Washington, D.C. July 2012 This report of the U.S. Antarctic Program Blue Ribbon Panel, More and Better Science in Antarctica Through Increased Logistical Effectiveness, was completed at the request of the White House Office of Science and Technology Policy and the National Science Foundation. Copies may be obtained from David Friscic at [email protected] (phone: 703-292-8030). An electronic copy of the report may be downloaded from http://www.nsf.gov/od/ opp/usap_special_review/usap_brp/rpt/index.jsp. Cover art by Zina Deretsky. MORE AND BETTER SCIENCE IN AntarctICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS REport OF THE U.S. AntarctIC PROGRAM BLUE RIBBON PANEL AT THE REQUEST OF THE WHITE HOUSE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND THE NatIONAL SCIENCE FoundatION WASHINGTON, D.C. JULY 2012 U.S. AntarctIC PROGRAM BLUE RIBBON PANEL WASHINGTON, D.C. July 23, 2012 Dr. John P. Holdren Dr. Subra Suresh Assistant to the President for Science and Technology Director & Director, Office of Science and Technology Policy National Science Foundation Executive Office of the President of the United States 4201 Wilson Boulevard Washington, DC 20305 Arlington, VA 22230 Dear Dr. Holdren and Dr. Suresh: The members of the U.S. Antarctic Program Blue Ribbon Panel are pleased to submit herewith our final report entitled More and Better Science in Antarctica through Increased Logistical Effectiveness. Not only is the U.S. logistics system supporting our nation’s activities in Antarctica and the Southern Ocean the essential enabler for our presence and scientific accomplish- ments in that region, it is also the dominant consumer of the funds allocated to those endeavors.
    [Show full text]
  • Journal of Cleaner Production 104 (2015) 109E120
    Journal of Cleaner Production 104 (2015) 109e120 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Improving the monitoring, control and analysis of the carbon accumulation capacity in Legal Reserves of the Amazon forest * Miriam Harumi Okumura a, , Alexandre Passos a, Beck Nader b, Giorgio de Tomi c a Department of Mining Engineering and Petroleum at the Polytechnic School of the University of Sao~ Paulo, Av. Prof. de Mello Moraes, 2373, CEP 05508-030, Brazil b Department of Mining Engineering at the Federal University of Minas Gerais e UFMG, Brazil c Department of Mining Engineering and Petroleum at the Polytechnic School of the University of Sao~ Paulo, Brazil article info abstract Article history: The Amazon forest is host for a large number of deforestation activities caused by artisanal mining and Received 3 February 2014 mainly by agriculture and livestock businesses. In order to regulate these activities and relieve the envi- Received in revised form ronmental impacts, local authorities have been trying to guide them towards more responsible operations. 1 September 2014 This paper describes the initiative of monitoring forest areas located near deforestation regions since Accepted 13 October 2014 fundamental elements such as biomass and carbon accumulation of trees may be adequately controlled Available online 28 October 2014 and monitored against occasional disturbances brought by these activities. The current standard approach in the Amazon is to monitor all trees in the forest within an area called transecto, in order to keep a rigorous Keywords: Amazon forest record of their behavior and growth. However, these control activities are restricted to controlling portions Legal reserve that are located in strategic areas, therefore they do not represent the entire region to be monitored.
    [Show full text]
  • The United States
    Bulletin No. 226 . Series F, Geography, 37 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES V. WALCOTT, DIRECTOR BOUNDARIES OF THE UNITED STATES AND OF THE SEVERAL STATES AND TERRITORIES WITH AN OUTLINE OF THE HISTORY OF ALL IMPORTANT CHANGES OF TERRITORY (THIRD EDITION) BY HENRY G-ANNETT WASHINGTON GOVERNMENT PRINTING OFFICE 1904 CONTENTS. LETTER OF TRANSMITTAL .................................... ............. 7 CHAPTER I. Boundaries of the United States, and additions to its territory .. 9 Boundaries of the United States....................................... 9 Provisional treaty Avith Great Britain...........................'... 9 Treaty with Spain of 1798......................................... 10 Definitive treaty with Great Britain................................ 10 Treaty of London, 1794 ........................................... 10 Treaty of Ghent................................................... 11 Arbitration by King of the Netherlands............................ 16 Treaty with Grreat Britain, 1842 ................................... 17 Webster-Ash burton treaty with Great Britain, 1846................. 19 Additions to the territory of the United States ......................... 19 Louisiana purchase................................................. 19 Florida purchase................................................... 22 Texas accession .............................I.................... 23 First Mexican cession....... ...................................... 23 Gadsden purchase...............................................
    [Show full text]