(12) United States Patent (10) Patent No.: US 9.271,961 B2 Penning Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9.271,961 B2 Penning Et Al US00927 1961 B2 (12) United States Patent (10) Patent No.: US 9.271,961 B2 Penning et al. (45) Date of Patent: Mar. 1, 2016 (54) BFUNCTIONAL AKR1C3 (56) References Cited INHIBITORS/ANDROGEN RECEPTOR MODULATORS AND METHODS OF USE U.S. PATENT DOCUMENTS THEREOF 2006/0235035 A1 10/2006 Hogberg et al. 2007/0129.433 A1 6/2007 Lardy et al. (71) Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, FOREIGN PATENT DOCUMENTS Philadelphia, PA (US) FR 28.62964 B1 12/2006 (72) Inventors: Trevor M. Penning, Springfield, PA (US); Adegoke O. Adeniji, Drexel Hill, OTHER PUBLICATIONS PA (US); Michael C. Burns, Definition of prevent, Princeton University "About WordNet.” Philadelphia, PA (US); Jeffrey Winkler, WordNet. Princeton University. 2010. <http://wordnet.princeton. Wynnewood, PA (US); Barry Twenter, edud, accessed Sep. 18, 2012.* Philadelphia, PA (US) Flanders Prostate 1984, 5 (6), 621-629.* Dunning et al. Cancer Epidemiology, Biomarkers and Prevention (73) Assignee: The Trustees of the University of 1999, 8,843-854.* Pennsylvania, Philadelphia, PA (US) Day et al. Endocrine-Related Cancer 2008, 15, 665-692.* Loriotetal. Invest. New Drugs 2014, published on-line Apr. 27, 2014, (*) Notice: Subject to any disclaimer, the term of this pp. 1-10.* patent is extended or adjusted under 35 Khanim et al. British Journal of Cancer 2014, 110, 1506-1516. U.S.C. 154(b) by 0 days. Yin et al. Frontiers in Oncology 2014, vol. 4, article 159, 1-12.* Lovering et al. Cancer Research 2004, 64, 1802-1810.* Medivation Press Release Nov. 6, 2007. http://www. (21) Appl. No.: 14/050,937 medicalnewstoday.com/releases/87762.php, accessed Jul. 23, 2015.* (22) Filed: Oct. 10, 2013 Adeniji, et al., “Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 517B-hydroxysteroid (65) Prior Publication Data dehydrogenase (AKR1C3).” Bioorganic & Medicinal Chemistry US 2014/O1 O7085A1 Apr. 17, 2014 Letters, 2011, 21: 1464-1468. Burczynski, et al., “Expression and Characterization of Four Recom Related U.S. Application Data binant Human Dihydrodiol Dehydrogenase Isoforms: Oxidation of trans-7,8-Dihrdroxy-7,8-dihydrobenzoapyrene to Activated (63) Continuation-in-part of application No. o-Quinone Metabolite Benzoa pyrene-7,8-dione”, Biochemistry, PCT/US2012/033199, filed on Apr. 12, 2012. 1998, 37; 6781-6790. Byrns, et al., “Type 5 17B-hydroxysteroid dehydrogenase? (60) Provisional application No. 61/475,091, filed on Apr. prostaglandin F synthase (AKR1C3): Role in breast cancer and inhi 13, 2011. bition by non-steroidal anti-inflammatory drug analogs.” Chem Biol Interact. Mar. 16, 2009, 178(1-3): 221-227 (Abstract). (51) Int. C. International Search Report and Written Opinion for PCT/US2012/ A6 IK3I/96 (2006.01) 033199 dated Sep. 21, 2012. CD7C 229/60 (2006.01) A6IP35/00 (2006.01) * cited by examiner A6 IK3I/405 (2006.01) A 6LX3L/95 (2006.01) Primary Examiner — Shengjun Wang A6 IK3I/205 (2006.01) Assistant Examiner — Irina Neagu A6 IK 45/06 (2006.01) (74) Attorney, Agent, or Firm — Saul Ewing LLP. Kathryn C07C 229/58 (2006.01) Doyle; Domingos J. Silva (52) U.S. C. CPC ............. A6 IK3I/405 (2013.01); A61 K3I/195 (57) ABSTRACT (2013.01); A61 K31/196 (2013.01); A61 K The invention includes compositions comprising selective 3 1/205 (2013.01); A61K 45/06 (2013.01); AKR1C3 inhibitors. The invention also includes composi C07C 229/58 (2013.01); C07C 229/60 tions comprising bifunctional AKR1C3 inhibitors and selec (2013.01) tive androgen receptor modulators. The invention further (58) Field of Classification Search includes methods of treatment using the compositions of the CPC ... C07C 229/58; C07C 229/60; A61 K31/196 invention. USPC ........... 514/567; 562/458, 454, 456, 457, 435 See application file for complete search history. 12 Claims, 42 Drawing Sheets U.S. Patent Mar. 1, 2016 Sheet 1 of 42 US 9.271,961 B2 Fig. 1 SIMS HSDs t-s Steroid (AKRs and SDRs) Steroic St. o St (inactive)s s Hormone N Structural Gene \ N NUCLEUS N 1. N- e - - - or - 11S U.S. Patent Mar. 1, 2016 Sheet 2 of 42 US 9.271,961 B2 Fig. 2 STEROD HORMONES O OH O O A- Androstenedione Testosterone O OH c AKR1c3 HO HO Estrone 17B-Estradiol O AOH AKR1C3 s' O O Progesterone 20o-Hydroxyprogesterone PROSTAGLANDINS sySN 1 Y1COOH AKR1c3 HO %-sy=1 N1) cooH SCN-- - S. oil S OH HO OH PGH2 PGF2, OH2 SN-1N1N HO2. SY-1N1N O 6H HOS-a--- ÖH PGD2 90,11 B-PGF2 U.S. Patent Mar. 1, 2016 Sheet 3 of 42 US 9.271,961 B2 Fig. 3 Progesterone -> DHP - allopregnanolone HSD3B2 SRDSA AKR1C2 DHEA -> A-AD see Actione me Androsterone Y HSD3B2 SRD5A AKR1C2 k A-AD .... Testosterone- DHT --> 3o-androstanedio U.S. Patent Mar. 1, 2016 Sheet 5 of 42 US 9.271,961 B2 HoH H 117 O o, HoH NADP Y55 OS U.S. Patent Mar. 1, 2016 Sheet 6 of 42 US 9.271,961 B2 9-51A U.S. Patent Mar. 1, 2016 Sheet 7 of 42 US 9.271,961 B2 U.S. Patent Mar. 1, 2016 Sheet 8 of 42 US 9.271,961 B2 fr| frae : ". V8(54H tae $ s U.S. Patent Mar. 1, 2016 Sheet 9 of 42 US 9.271,961 B2 5:5ae ){ ! : Tae, 88(51H. : x. !1 U.S. Patent Mar. 1, 2016 Sheet 10 of 42 US 9.271,961 B2 i U.S. Patent Mar. 1, 2016 Sheet 11 of 42 US 9.271,961 B2 U.S. Patent Mar. 1, 2016 Sheet 12 of 42 US 9.271,961 B2 II(51,1 uºquun.N?IDAD Shun duo Solon U.S. Patent Mar. 1, 2016 Sheet 13 of 42 US 9.271,961 B2 C O : e U.S. Patent Mar. 1, 2016 Sheet 14 of 42 US 9.271,961 B2 U.S. Patent Mar. 1, 2016 Sheet 15 of 42 US 9.271,961 B2 anlewOSOIWITH OI< U.S. Patent Mar. 1, 2016 Sheet 18 of 42 US 9.271,961 B2 LI'54) U.S. Patent Mar. 1, 2016 Sheet 19 of 42 US 9.271,961 B2 sq?VSN–||colaxv sqIVSN—FITZIL-xoo U.S. Patent Mar. 1, 2016 Sheet 20 of 42 US 9.271,961 B2 0001,001, | |-XOO- Z-XOOV |'0||0'0 O O O O 0 00|| CO O r CN fuuleue. AAIoW % U.S. Patent US 9.271,961 B2 U.S. Patent Mar. 1, 2016 Sheet 22 of 42 US 9.271,961 B2 zz(51H. U.S. Patent Mar. 1, 2016 Sheet 23 of 42 US 9.271,961 B2 V O ven 1. |Ng O O O O 3 OO O r CN fuuleue MAOW 96 U.S. Patent US 9.271,961 B2 U.S. Patent Mar. 1, 2016 Sheet 25 of 42 US 9.271,961 B2 £Ipunoduopjosuo?eu?u00uop ync~*~wnco–wnu–º– wnov~wn…~~~~ynw0–D– (up to Ric) (A) U.S. Patent Mar. 1, 2016 Sheet 26 of 42 US 9.271,961 B2 3 AIAW euAZu% U.S. Patent Mar. 1, 2016 Sheet 28 of 42 US 9.271,961 B2 (udo)AApeople-o 3. 3. O SN O r (udo)AAoeople-oil U.S. Patent Mar. 1, 2016 Sheet 29 of 42 US 9.271,961 B2 wS. + 2 > 2 H. O. P. on a S riII c O O itS (5is Of Y sexe f s T l T l l 6ugueue MW3W AW 96 U.S. Patent Mar. 1, 2016 Sheet 30 of 42 US 9.271,961 B2 s AA3Weseleyan 9, U.S. Patent Mar. 1, 2016 Sheet 31 of 42 US 9.271,961 B2 20101|10 (wn)Ipunoduuoo] |2.01±01-0.1901 fu put 99eds 9%, U.S. Patent Mar. 1, 2016 Sheet 32 of 42 US 9.271,961 B2 6Z(51) o06 U.S. Patent Mar. 1, 2016 Sheet 33 of 42 US 9.271,961 B2 Fig. 30 ICso Values (uM) Compds (R) 1C3 1C1 1 C2 1C4 1B1 1B10 C.CO2H an-j-R Compound 5 0.03 6.74 3.38 32.7 > 50 46.0 -NO 204) (101 (988) Compound 6 0.05 15.6 19.5 25.7 38.6 37.1 (p-Ac) (292) (364) (477) Compound 7 0.06 22.7 5.4 62.7 > 50 > 50 (p-CFs) (368) (249) (1015) Compound 8 0.14 30.2 19.1 48.7 ND ND (p-Cl) (222) (140) (357) Compound 9 0.13 31.3 18.1 91.4 > 50 > 50 -Br 250) (145) 728) Compound 10 0.28 35.6 3. 39. > 50 15 (p-t-Bu) (126) (110) (139) BMT 3-224 30.5 6.4 28.7 (R: o-COH, 0.04 27.7 16.2 p-Ac) (787) (165) (739) R. s' 0.03 4.35 5.50 50 ND p-CF)u v V2, (132)132 (136)136 (172)172 BMT 4-90 6.32 5.56 20.4 (R: o-NO, 0.04 42.7 39.3 p-OMe) (173) (139) (560) Compound 13 11.0 11.7 8.17 '' (138) (156) (102) ND >30 U.S. Patent Mar. 1, 2016 Sheet 34 of 42 US 9.271,961 B2 Fig. 31 Cmpds (R) COX-1 ICs (uM) COX-2 ICso (uM) C.COH 2 N. N --R FLU 2.23 O.06 Compound 5 30.76 O.74 (p-NO) Compound 6 > 00 > 00 -Ac) Compound 7 > 100 > 100 (p-CFs) Compound 8 > 00 ND (p-Cl) Compound 9 > 00 > 00 (p-Br) Compound 10 > 100 > 100 (p-t-Bu) BMT 3-224 > 00 > 00 (R: O-CO2H.
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Novel Insights Into Mannitol Metabolism in the Fungal Plant
    Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, Pascale Cotton To cite this version: Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, et al.. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochemical Journal, Portland Press, 2010, 427 (2), pp.323-332. 10.1042/BJ20091813. hal-00479283 HAL Id: hal-00479283 https://hal.archives-ouvertes.fr/hal-00479283 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 05 Feb 2010 as manuscript BJ20091813 1 NOVEL INSIGHTS INTO MANNITOL METABOLISM IN THE FUNGAL PLANT 2 PATHOGEN BOTRYTIS CINEREA 3 4 Authors : Thierry Dulermo*†, Christine Rascle*, Geneviève Billon-Grand*, Elisabeth Gout‡, 5 Richard Bligny‡ and Pascale Cotton§ 6 7 Address 8 *Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR 5240 9 Microbiologie, Adaptation
    [Show full text]
  • Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway
    Send Orders for Reprints to [email protected] 10 Protein & Peptide Letters, 2014, 21, 10-14 Medium-Chain Dehydrogenases with New Specificity: Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway Yanbin Wu, Jeffrey Arciola, and Nicole Horenstein* Department of Chemistry, University of Florida, Gainesville Florida, 32611-7200, USA Abstract: Azasugar biosynthesis involves a key dehydrogenase that oxidizes 2-amino-2-deoxy-D-mannitol to the 6-oxo compound. The genes encoding homologous NAD-dependent dehydrogenases from Bacillus amyloliquefaciens FZB42, B. atrophaeus 1942, and Paenibacillus polymyxa SC2 were codon-optimized and expressed in BL21(DE3) Escherichia coli. Relative to the two Bacillus enzymes, the enzyme from P. polymyxa proved to have superior catalytic properties with a Vmax of 0.095 ± 0.002 mol/min/mg, 59-fold higher than the B. amyloliquefaciens enzyme. The preferred substrate is 2- amino-2-deoxy-D-mannitol, though mannitol is accepted as a poor substrate at 3% of the relative rate. Simple amino alco- hols were also accepted as substrates at lower rates. Sequence alignment suggested D283 was involved in the enzyme’s specificity for aminopolyols. Point mutant D283N lost its amino specificity, accepting mannitol at 45% the rate observed for 2-amino-2-deoxy-D-mannitol. These results provide the first characterization of this class of zinc-dependent medium chain dehydrogenases that utilize aminopolyol substrates. Keywords: Aminopolyol, azasugar, biosynthesis, dehydrogenase, mannojirimycin, nojirimycin. INTRODUCTION are sufficient to convert fructose-6-phosphate into manno- jirimycin [9]. We proposed that the gutB1 gene product was Azasugars such as the nojirimycins [1] are natural prod- responsible for the turnover of 2-amino-2-deoxy-D-mannitol ucts that are analogs of monosaccharides that feature a nitro- (2AM) into mannojirimycin as shown in Fig.
    [Show full text]
  • Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients
    Article Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients Cedric Simillion 1,2, Nasser Semmo 2,3, Jeffrey R. Idle 2,3,4, and Diren Beyoğlu 2,4,* 1 Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; [email protected] 2 Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; [email protected] (N.S.); [email protected] (J.R.I.) 3 Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland 4 Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, 11201 New York, NY, USA * Correspondence: [email protected]; Tel.: +41-31-632-87-11 Received: 11 September 2017; Accepted: 5 October 2017; Published: 8 October 2017 Abstract: About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV) or C (HCV), with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Role in Plant Stress Physiology and Regulation of Gene Expression
    Characterisation of selected Arabidopsis aldehyde dehydrogenase genes: role in plant stress physiology and regulation of gene expression Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Tagnon Dègbédji MISSIHOUN aus Cotonou, Benin Bonn, November 2010 Angefertigt mit Genehmigung der Mathematisch- Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes 1. Referentin: Prof. Dr. Dorothea Bartels 2. Koreferent: Priv. Doz. Dr. Hans-Hubert Kirch Tag der Promotion: 22. Februar 2011 Erscheinungsjahr: 2011 II DECLARATION I hereby declare that the whole PhD thesis is my own work, except where explicitly stated otherwise in the text or in the bibliography. Bonn, November 2010 ------------------------------------ Tagnon D. MISSIHOUN III DEDICATION To My wife: Fabienne TOSSOU-MISSIHOUN and our kids Floriane S. Jennifer and Sègnon Anges- Anis My parents: Lucrèce KOTOMALE and Dadjo MISSIHOUN My sister and brothers: Mariette, Marius, Ricardo, Renaud, Ulrich And my dearest aunts and uncles: Hoho, Rebecca, Cyriaque, Dominique, Alphonsine IV CONTENTS ABBREVIATIONS ...............................................................................................................................................X FIGURES AND TABLES ...............................................................................................................................XIII
    [Show full text]
  • HOXB6 Homeo Box B6 HOXB5 Homeo Box B5 WNT5A Wingless-Type
    5 6 6 5 . 4 2 1 1 1 2 4 6 4 3 2 9 9 7 0 5 7 5 8 6 4 0 8 2 3 1 8 3 7 1 0 0 4 0 2 5 0 8 7 5 4 1 1 0 3 6 0 4 8 3 7 4 7 6 9 6 7 1 5 0 8 1 4 1 1 7 1 0 0 4 2 0 8 1 1 1 2 5 3 5 0 7 2 6 9 1 2 1 8 3 5 2 9 8 0 6 0 9 5 1 9 9 2 1 1 6 0 2 3 0 3 6 9 1 6 5 5 7 1 1 2 1 1 7 5 4 6 6 4 1 1 2 8 4 7 1 6 2 7 7 5 4 3 2 4 3 6 9 4 1 7 1 3 4 1 2 1 3 1 1 4 7 3 1 1 1 1 5 3 2 6 1 5 1 3 5 4 5 2 3 1 1 6 1 7 3 2 5 4 3 1 6 1 5 3 1 7 6 5 1 1 1 4 6 1 6 2 7 2 1 2 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S HOXB6 homeo box B6 HOXB5 homeo box B5 WNT5A wingless-type MMTV integration site family, member 5A WNT5A wingless-type MMTV integration site family, member 5A FKBP11 FK506 binding protein 11, 19 kDa EPOR erythropoietin receptor SLC5A6 solute carrier family 5 sodium-dependent vitamin transporter, member 6 SLC5A6 solute carrier family 5 sodium-dependent vitamin transporter, member 6 RAD52 RAD52 homolog S.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Clostridium Difficile Exploits a Host Metabolite Produced During Toxin-Mediated Infection
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Clostridium difficile exploits a host metabolite produced during toxin-mediated infection 2 3 Kali M. Pruss and Justin L. Sonnenburg* 4 5 Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford 6 CA, USA 94305 7 *Corresponding author address: [email protected] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Several enteric pathogens can gain specific metabolic advantages over other members of 24 the microbiota by inducing host pathology and inflammation. The pathogen Clostridium 25 difficile (Cd) is responsible for a toxin-mediated colitis that causes 15,000 deaths in the U.S. 26 yearly1, yet the molecular mechanisms by which Cd benefits from toxin-induced colitis 27 remain understudied. Up to 21% of healthy adults are asymptomatic carriers of toxigenic 28 Cd2, indicating that Cd can persist as part of a healthy microbiota; antibiotic-induced 29 perturbation of the gut ecosystem is associated with transition to toxin-mediated disease.
    [Show full text]
  • Triacylglyceride Metabolism by Fusarium Graminearum During Colonization and Sexual Development on Wheat
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Technology Food Science and Technology Department 2009 Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat John C. Guenther Michigan State University Heather E. Hallen-Adams University of Nebraska at Lincoln, [email protected] Heike Bücking South Dakota State University Yair Shachar-Hill Michigan State University Frances Trail Michigan State University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/foodsciefacpub Part of the Food Science Commons Guenther, John C.; Hallen-Adams, Heather E.; Bücking, Heike; Shachar-Hill, Yair; and Trail, Frances, "Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat" (2009). Faculty Publications in Food Science and Technology. 70. https://digitalcommons.unl.edu/foodsciefacpub/70 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MPMI Vol. 22, No. 12, 2009, pp. 1492–1503. doi:10.1094 / MPMI -22-12-1492. © 2009 The American Phytopathological Society e-Xtra* Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat John C. Guenther,1 Heather E. Hallen-Adams,1 Heike Bücking,2 Yair Shachar-Hill,1 and Frances Trail1,3 1Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A.; 2Biology and Microbiology Department, South Dakota State University, Northern Plains Biostress, Brookings, SD 57007, U.S.A.; 3Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, U.S.A.
    [Show full text]
  • NRF2 and the Ambiguous Consequences of Its Activation During Initiation and the Subsequent Stages of Tumourigenesis
    cancers Review NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis Holly Robertson 1,2, Albena T. Dinkova-Kostova 1 and John D. Hayes 1,* 1 Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; [email protected] (H.R.); [email protected] (A.T.D.-K.) 2 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK * Correspondence: [email protected]; Tel.: +44-(0)-1382-383182 Received: 30 October 2020; Accepted: 27 November 2020; Published: 2 December 2020 Simple Summary: Transcription factor NRF2 controls expression of antioxidant and detoxification genes. Normally, the activity of NRF2 is tightly controlled in the cell, and is continuously adjusted to ensure that cells are protected against endogenous chemicals and environmental agents that perturb the intracellular antioxidant/pro-oxidant balance (i.e., redox) that must be maintained for them to grow and survive in an appropriate manner. This tight control of NRF2 is achieved by a repressor protein called KEAP1 that perpetually targets NRF2 protein for degradation under normal conditions, but is unable to do so when challenged with oxidants or thiol-reactive chemicals. In the context of cancer, it is well known that drugs that stimulate short-term and reversible activation of NRF2 can provide protection for a limited period against exposure to chemicals that cause cancer. However, it is also becoming widely recognised that permanent hyper-activation of NRF2 resulting from somatic mutations in the gene that encodes NRF2, or in genes associated with its degradation, is frequently observed in certain cancers and associated with poor outcome.
    [Show full text]