Fire weather climatology dataset for Victoria Final Report to the Victoria Department of Environment, Water, Land and Planning August 2015 Timothy Browna,b, Graham Millsb, Sarah Harrisb, Domagoj Podnara, Hauss Reinbolda and Matt Fearona aDesert Research Institute, Reno Nevada USA,
[email protected] bMonash University, Clayton Victoria Australia,
[email protected] EXECUTIVE SUMMARY Climatology data of fire weather across the landscape can provide science-based evidence to inform strategic decisions to ameliorate the impacts (at times extreme) of bushfires on community socio-economic wellbeing and to sustain ecosystem health and functions. A long-term climatology requires spatial and temporal data that are consistent to represent the landscape in sufficient detail to be useful for fire weather studies and management purposes. In Victoria there are some considerable barriers in creating a long-term homogeneous climatology strictly from meteorological observations, given the relatively low number of reliable, long-term observation records available for analyses. These barriers exist in both space and time. Spatially, the majority of the observations are based near population centres, and so do not necessarily reflect the conditions in the forests where the bulk of major bushfires primarily occur concentrated in the slopes and valleys of the ranges through central and eastern Victoria. Temporal inhomogeneities include changes with time in both observation network density and in reporting frequency. The latter is particularly evident