4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series

Total Page:16

File Type:pdf, Size:1020Kb

4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska 4-H Clubs: Historical Materials and 4-H Youth Development Publications 1987 4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series Follow this and additional works at: http://digitalcommons.unl.edu/a4hhistory "4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series" (1987). Nebraska 4-H Clubs: Historical Materials and Publications. 372. http://digitalcommons.unl.edu/a4hhistory/372 This Article is brought to you for free and open access by the 4-H Youth Development at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska 4-H Clubs: Historical Materials and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. RD2178 32444 cy~ Nebraska Cooperative Extension Service 4-H 280 s 633 r6~ 11/i:z. na. ~?0 Tropical Fish Part of the Nebraska 4-H Small Animal and Pet Series Issued in furtherance of Cooperative Ext ension work, Acts of May 8 and June 30, 1 91 4 , in cooperation with the f e. ..e \ U.S . Department of Agriculture . leo E. lucas, Director of Cooperative Extension Service, University of Nebraska, : . · ; a Inst itut e of Agriculture and Natural Resources. ~• • • ... .... o The Coopera tive Extenaion Service providet information a~d educational programs to all people without rega rd to race, color, national origin, s ax or handic ap. A Note To Parents and Leaders Table of Contents · Welcome to an exciting project in aquatic Purpose of the Tropical Fish Project 3 -science. Raising fish can be an enlightening Planning the Project . 3 and challenging experience. Project activities are geared to allow considerable flexibility in Why a Tropical Fish Project . 4 choosing the expense and depth of involve­ Planning Ahead . 4 ment. A child may invest just a few dollars if raising goldfish or more if raising tropical fish. Choosing Your Fish . 5 The record keeping teaches scientific record­ Setting Up Your Aquarium . 6 ing practices and initiates good data collection. Getting Tropical Fish Home Alive . 7 This is not accidental but a planned and neces­ sary part of the program. Notice how the pro­ Filling Your Tank . 7 ject initiates "experience centered" activities Draining Your Tank . 8 (building the aquarium, selecting containers, buying fish, food, plants, etc.). Specifically, it Gravel............................. 8 is designed to help the child learn about pur­ Locating the Aquarium . 8 chasing, undertake experiences that help development, acquire responsibilities, make Plants . 8 decisions and care for living things. Reading Filters . 9 books and talking with other hobbyists will en­ Food.............................. 9 courage youth to expand their knowledge and interests. Snails ............................. 10 Light for the Aquarium . 10 Credits Fish Disease . 11 The content of this project was developed from several sources. Recognition is given to Salt . 11 Mrs. Mary Oberthur, 4-H volunteer leader, In­ Fish Care Habits . 11 dianapolis, Ind., Gary Garey, former Exten­ General Management . 11 sion Agent in Otoe County, Karen Kolb, General Manager of "The Pet Ark", Lincoln, Feeding ............................ 12 and others who have contributed to the Cleaning ... A • • • • • • • • • • • • • • • • • • • • • • • 12 publication. Safety Rules ........................ 12 Preparing Fish for Exhibit .............. 12 Simple Equipment to Make Yourself . 13 Aquatic Science Lesson 1 What is a Fish? ..................... 13 Aquatic Science Lesson 2 The Parts of a Fish ................... 15 Aquatic Science Lesson 3 Identifying Animals & Plants .......... 16 Aquatic Science Lesson 4 Water ............................. 17 Aquatic Science Lesson 5 Fish Behavior. 17 2 Purpose Of the Tropical Fish Project 1. To interest 4-H youth in caring for tropi­ cal fish in the home aquarium by teach­ ing them: a. the proper handling of fish b. grouping of two or more compatible breeds in the same aquarium c. feeding d. breeding 2. To learn how to construct a simple aquarium. 3. To learn the principles of a balanced aquarium. 4. ro learn about environmental factors af­ fecting the health of fish. 5. To help 4-H youth expand their knowl­ edge of principles related to aquatic Planning the Project science. 6. To encourage 4-H youth to make new Youths taking this project can choose many friends and to learn to share with others. things to learn and do. You can learn, the The best way to learn about tropical fish is basics the first year, then look for new thmgs to own some and learn their habits by careful to learn each year after that. Check which of observation. This project can be as simple or the following you will work on this year. elaborate as the member desires. __ Set up an aquarium . 1. Obtain: Identify and tell the origin of at least five a. One or more large glass jars (gallon -- breeds of genera (plural for genus) of size or larger). The diameter of the fish mouth of the jar should be at least Learn what kinds of fish are compatible eight inches. in a community tank b. At least three fishes Learn about diseases that tropical fish c. Some aquatic plants -- are susceptible to and the treatment of d. Gravel and sand the diseases e. Pump and other accessories, if __ Identify at least three kinds of water needed or desired plants that are used in aquariums . , f. Commercial fish food __ Explain what "balanced aquanum 2. Build or purchase an aquarium means 3. Make a catch net Maintain an aquarium and take care of If desired, larger aquariums may be built at least three breeds of fish and a great number and species of fish may be Successfully breed live bearing fish obtained. After obtaining some knowledge of -- Successfully breed egg laying fish the life and breeding habits of each species, a -- Give one or more demonstrations and breeding program may be started. Here the -- talks on the Tropical Fish Project and 4-H member will encounter new problems such as: Aquatic Science Lessons 1. The need for additional aquariums Suggested Presentation Topics 2. The need for different kinds of food 1. How to make a catch net such as infusoria, brine shrimps, worms 2. How to place sand and water in the and others aquarium 3 3. How to place plants in the aquarium what you do the second year. If you want to 4. How to construct a redwood aquarium try breeding, you will need a year for results. 5. How to transport tropical fish Your library has many interesting books about 6. How to test aquarium water tropical fish; ask the librarian to help you. 7. Fish behavior Raising tropical fresh water fish is quite sim­ ilar to raising farm animals or a dog, cat or parakeet in the home. They all respond to pro­ per feed, good care and a sanitary place in which to live. The proper care and raising of all animals requires: 1. An interest in living animals. 2. An understanding of their living habits. 3. A keen sense of observation and interest in how they live and reproduce; interest in rela­ Why A Tropical Fish Project? tionship between the animal and plant life in­ volved. Fish are lovely to look at and, with a little 4. The learning of skills as each new subject planning, they can be inexpensive, easy, inter­ becomes a new learning experience for the esting, soothing, and educational. Of course, 4-H'er. They can consult with their 4-H leader, they can be expensive, troublesome, and messy parents and others in the community for infor­ . it's all up to you! mation . Fish are completely dependent upon you for 5. The reading of books and magazines to their food and living conditions. If you devel­ further broaden his knowledge. Much has op regular fish-care habits, your fish will been written on the topic of tropical fish and thrive. They tolerate occasional neglect if they books on the subject may be borrowed from li­ are in good condition, but continual neglect braries or bought from stores. will show clearly. Remember: they are living The proje~t helps develop an inquiring creatures! You may select this project if you mind. It helps to satisfy the desire for new give your fish regular meals, clean water, and knowledge and adventure in the world of liv­ interesting surroundings. How would you feel ing things. New knowledge, new experience, in a bare bowl, swimming in dirty water, hun­ new interests aQd understanding help boys and gry and not knowing when or if you would be girls find themselves, their likes and dislikes fed? Your fish will be a reflection of the real and often their life's work. you ... careful or careless. When you get to know your fish, you will Planning Ahead find they have personalities. Even in a large aquarium, individuals will stand out and earn Let's think about the "home" you will have names for themselves such as Baby, Grandma, prepared for your fish when you get them. Try Head Wife, Grumpy, Scaredy Cat, Big Papa. to allow one or two days for the fish tank to Classes are divided by equipment and exper­ "season." This means: ience. Some of you will be caring for tropical • dissolved chemicals such as chlorine can fish for the first time while others may already leave the water; have equipment and some experience. Equip­ • bacteria have time to break down any de­ ment will control the kind of fish you have tergents; while experience will suggest what you do with • the plants can get their roots settled; and them. Beginners who want to continue their • rock dust can settle, leaving the water work with fish should start planning this fall.
Recommended publications
  • Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
    Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution.
    [Show full text]
  • Hormone-Induced Spawning of Cultured Tropical Finfishes
    ADVANCES IN TROPICAL AQUACULTURE. Tahiti, Feb. 20 - March 4 1989 AQUACOP 1FREMER Acres de Colloque 9 pp. 519 F39 49 Hormone-induced spawning of cultured tropical finfishes C.L. MARTE Southeast Asian Fisheries Development Genie. Aquaculture Department, Tig- bauan, ILOILO, Philippines Abstract — Commercially important tropical freshwater and marine finfishes are commonly spawned with pituitary homogenate, human chorionic gonadotropin (HCG) and semi-purified fish gonadotropins. These preparations are often adminis- tered in two doses, a lower priming dose followed a few hours later by a higher resolving dose. Interval between the first and second injections may vary from 3 - 24 hours depending on the species. Variable doses are used even for the same species and may be due to variable potencies of the gonadotropin preparations. Synthetic analogues of luteinizing hormone-releasing hormone (LHRHa) are becoming widely used for inducing ovulation and spawning in a variety of teleosts. For marine species such as milkfish, mullet, sea bass, and rabbitfish, a single LHRHa injection or pellet implant appears to be effective. Multiple spawnings of sea bass have also been obtained following a single injection or pellet implant of a high dose of LHRHa. In a number of freshwater fishes such as the cyprinids, LHRHa alone however has limited efficacy. Standardized methods using LHRHa together with the dopamine antagonists pimozide, domperidone and reserpine have been developed for various species of carps. The technique may also be applicable for spawning marine teleosts that may not respond to LHRHa alone or where a high dose of the peptide is required. Although natural spawning is the preferred method for breeding cultivated fish, induced spawning may be necessary to control timing and synchrony of egg production for practical reasons.
    [Show full text]
  • Coral Reef Fishes: Caribbean, Indian Ocean and Pacific Ocean Including the Red Sea PDF Book View Product
    CORAL REEF FISHES: CARIBBEAN, INDIAN OCEAN AND PACIFIC OCEAN INCLUDING THE RED SEA PDF, EPUB, EBOOK Ewald Lieske,Robert Myers | 400 pages | 15 Jan 2002 | Princeton University Press | 9780691089959 | English | New Jersey, United States Coral Reef Fishes: Caribbean, Indian Ocean and Pacific Ocean Including the Red Sea PDF Book View Product. Performance and Analytics. Coral reef with tropical fish, Marsa Alam, Egypt. It is a grazer, feeding on algae, sponges, and coral. Most reef-building corals contain microscopic symbiotic algae called zooxanthellae, which live inside the coral tissue. More information about this seller Contact this seller 8. Reef with school of tropical fish and Elkhorn coral, Caribbean sea. Published by Princeton Coral reef and tropical fish in Red Sea. Condition: Near Fine. High res. Colorful tropical fish swimming over coral reef with blue sea background. As with most other triggers, the clown is an aggressive feeder, feeding mainly on crustaceans and mollusks. Closeup of colorful tropical Butterfly fish swimming above coral reef. Panorama in a coral reef with shoal of fish. The fish are feeding on minute plankton. A Pair of Masked butterflyfish chaetodon semilarvatus over a coral reef. In addition, this guide provides clues for quick and proper identification. Coral reef ecosystems are influenced by changing weather and oceanographic factors, including temperature, currents, carbonate chemistry, nutrients, and productivity. From Contributor separated by comma. Gray Angelfish Pomacanthus arcuatus As with many angelfish species, the gray angelfish undergoes a color change as it grows. Land- based sources of pollution, overfishing, recreational overuse, and invasive species impact many coastal areas adjacent to urban areas.
    [Show full text]
  • Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
    Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy .
    [Show full text]
  • Fish As Major Carbonate Mud Producers and Missing Components of the Tropical Carbonate Factory
    Fish as major carbonate mud producers and missing components of the tropical carbonate factory Chris T. Perrya,1, Michael A. Saltera, Alastair R. Harborneb, Stephen F. Crowleyc, Howard L. Jelksd, and Rod W. Wilsonb,1 aSchool of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; bBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom; cDepartment of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom; and dUS Geological Survey, 7920 North West 71st Street, Gainesville, FL 32653 Edited* by George N. Somero, Stanford University, Pacific Grove, CA, and approved January 6, 2011 (received for review November 2, 2010) Carbonate mud is a major constituent of recent marine carbonate nite and Mg-calcite mud-grade carbonate occur and thus budget- sediments and of ancient limestones, which contain unique records ary considerations need to accommodate production from a of changes in ocean chemistry and climate shifts in the geological range of potential sources. This issue has important geo-environ- past. However, the origin of carbonate mud is controversial and mental implications because carbonate muds are major constitu- often problematic to resolve. Here we show that tropical marine ents of limestones and are volumetrically important in most fish produce and excrete various forms of precipitated (nonskele- modern shallow marine carbonate environments (17). Further- tal) calcium carbonate from their guts (“low” and “high” Mg-calcite more, the presence of Mg-calcite muds in marine carbonates is and aragonite), but that very fine-grained (mostly <2 μm) high Mg- considered critical to preserving primary sediment textures and > calcite crystallites (i.e., 4 mole % MgCO3) are their dominant ex- fabrics (15), thus influencing sediment porosity and permeability cretory product.
    [Show full text]
  • Tropical Fish Now That You Have Set up Your Aquarium and Are Starting to Think About Adding Fish, You Have Many Choices to Choose From
    Tropical Fish Now that you have set up your aquarium and are starting to think about adding fish, you have many choices to choose from. One specific type of fish is the tropical fish, found in tropical waters all over the world and in areas near the equator. They can live in fresh water such as ponds, lakes, streams and even oceans that are salt water. In home aquariums, tropical fish are usually kept in heated fish tanks or in areas where the ambient room temperature is between 70°F - 82°F. As you make your decisions, be sure to research their compatibility, hardiness and if they are a schooling fish or not. Selecting the right fish will help ensure that you have hours of enjoyment and success. Today, many freshwater fish are captive bred either in fish farms or by hobbyists, making them readily available and easy to find. Popular freshwater tropical fish include Bettas, Guppies, Tetras, Swordtails, Platys, Barbs, Mollies and Corydoras among others. Sometimes people starting out in the aquatic hobby may not always provide their fish with ideal living conditions. Fish recommended for beginners and new aquariums must be durable and able to handle sometimes-poor water quality and stressful living conditions. The list included here are freshwater fish and will provide you with a nice assortment to consider. Cold -Water Fish The most common cold-water fish species is the goldfish but there are many other fish species that do not require a heated tank such as White Cloud Mountain Minnows, Bloodfin Tetras, and Rosy Barbs among others; where their preferred water temperature is between 64 to 72 degrees F.
    [Show full text]
  • Aquacultue OPEN COURSE: NOTES PART 1
    OPEN COURSE AQ5 D01 ORNAMENTAL FISH CULTURE GENERAL INTRODUCTION An aquarium is a marvelous piece of nature in an enclosed space, gathering the attraction of every human being. It is an amazing window to the fascinating underwater world. The term ‘aquarium’is a derivative of two words in Latin, i.e aqua denoting ‘water’ and arium or orium indicating ‘compartment’. Philip Henry Gosse, an English naturalist, was the first person to actually use the word "aquarium", in 1854 in his book The Aquarium: An Unveiling of the Wonders of the Deep Sea. In this book, Gosse primarily discussed saltwater aquaria. Aquarium or ornamental fish keeping has grown from the status of a mere hobby to a global industry capable of generating international exchequer at considerable levels. History shows that Romans have kept aquaria (plural for ‘aquarium’) since 2500 B.C and Chinese in 1278-960 B.C. But they used aquaria primarily for rearing and fattening of food fishes. Chinese developed the art of selective breeding in carp and goldfish, probably the best known animal for an aquarium. Ancient Egyptians were probably the first to keep the fish for ornamental purpose. World’s first public aquarium was established in Regents Park in London in 1853. Earlier only coldwater fishes were kept as pets as there was no practical system of heating which is required for tropical freshwater fish. The invention of electricity opened a vast scope of development in aquarium keeping. The ease of quick transportation and facilities for carting in temperature controlled packaging has broadened the horizon for this hobby.
    [Show full text]
  • FOTAS Fish Tales 05.4
    In this issue: 3 The Future of the Fed- eration of Texas Aquarium Societies Greg Steeves 8 FOTAS BAP 17 FOTAS HAP 24 FOTAS CARES Greg Steeves 25 Spawning the Buffalo- Volume 5 Issue 4 head Cichlid The FOTAS Fish Tales is a quarterly publication of the Federation of Texas Duc Nguyen Aquarium Societies a non-profit organization. The views and opinions contained within are not necessarily those of the editors and/or the officers 27 GloFish, Love them or and members of the Federation of Texas Aquarium Societies. Hate them, They are here to stay! FOTAS Fish Tales Editor: Gerald Griffin [email protected] Gerald Griffin Fish Tales Submission Guidelines 31 What the Heck is an ESU? Articles: Leslie Dick Please submit all articles in electronic form. We can accept most popular software formats and fonts. Email to [email protected]. Photos and 35 Spawning Julido- graphics are encouraged with your articles! Please remember to include the photo/graphic credits. Graphics and photo files may be submitted in chromis dickfieldi any format, however uncompressed TIFF, JPEG or vector format is pre- Gerald Griffin ferred, at the highest resolution/file size possible. If you need help with graphics files or your file is too large to email, please contact me for alterna- 37 Meet the San Antonio tive submission info. Aquatic Plant Club Art Submission: Chris Lewis Graphics and photo files may be submitted in any format. However, uncom- pressed TIFF, JPEG or vector formats are preferred. Please submit the 39 Participating in the FO- highest resolution possible. TAS BAP and HAP Next deadline…… Gerald Griffin January 15th 2016 On the Cover: COPYRIGHT NOTICE GloFish - Photos by York- All Rights Reserved.
    [Show full text]
  • Experiments on the Biology of Infusoria Inhabiting the Rumen of Goats Helen A
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1930 Experiments on the biology of infusoria inhabiting the rumen of goats Helen A. Mowry Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physiology Commons, Veterinary Physiology Commons, and the Zoology Commons Recommended Citation Mowry, Helen A., "Experiments on the biology of infusoria inhabiting the rumen of goats " (1930). Retrospective Theses and Dissertations. 14255. https://lib.dr.iastate.edu/rtd/14255 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Effective Method to Culture Infusoria, a Highly Potential Starter Feed For
    International Journal of Fisheries and Aquatic Studies 2016; 4(3): 124-127 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 (GIF) Impact Factor: 0.352 Effective method to culture infusoria, a highly potential IJFAS 2016; 4(3): 124-127 © 2016 IJFAS starter feed for marine finfish larvae www.fisheriesjournal.com Received: 06-03-2016 Accepted: 07-04-2016 Y Mukai, MZ Sani, N Mohammad-Noor, S Kadowaki Y Mukai Abstract Department of Marine Science, This study was conducted to detect suitable protozoan species of infusoria as starter diet for early stage of Kulliyyah of Science, marine finfish larvae. Infusoria were cultured using vegetables (Brassica pekinensis and Brassica International Islamic University chinensis) and dry fish meal with 30 ppt, 15 ppt saline water and freshwater in 40 liter aquaria. In the 30 Malaysia, Malaysia and 15 ppt aquaria, Euplotes sp. was the dominant species and cell sizes were 60–80 µm. The densities of Euplotes sp. were 400–500 individuals/ml in the 30 ppt aquaria and 800-1300 individuals/ml in the 15 MZ Sani, Department of Biotechnology, ppt aquaria. In both conditions, the high densities were maintained for 13 days. The densities of protozoa Kulliyyah of Science, in saline water were higher in 15 ppt than in 30 ppt aquaria. The densities of protozoa cultured by our International Islamic University method was enough amount for early stage larvae of groupers and snappers. Therefore, this method is Malaysia, Malaysia. suitable for protozoa culture in small scale hatcheries. N Mohammad-Noor Keywords: Fish larvae, Live feed, Infusoria, Protozoa, Starter diet Department of Marine Science, Kulliyyah of Science, 1.
    [Show full text]
  • December 11, 2012 London Aquaria Society Ho! Ho! Ho! Merry Christmas Everyone & Have a Safe and Happy New Year
    Volume 56, Issue 4 December 11, 2012 London Aquaria Society Ho! Ho! Ho! www.londonaquariasociety.com Merry Christmas Everyone & have a safe and Happy New Year POECILIA RETICULATA This is a very prolific fish, must do the choosing for them. The Guppy/Millions Fish easily bred in the aquarium. If Guppies are a good com- proper attention has been paid bination along with your favour- By: S. Pollard to water conditions and diet, ite kind of plants in a show tank. January 1990, London Aquaria these fish reach sexual maturity While Guppies do pick away at Society in just a few months. The ges- the micro-food which flourishes Submitted by: Annette & Ron tation period, (depending on upon plant leaves they do not Bishop temp.) is from 4-6 weeks. The eat the plant itself; neither will spawn sizes range in number they move the gravel around the The original basic colour from 20-100, (another good way some other species do. of P. Reticulata was a brownish reason for a large tank). The Beautiful, lively, easily bred, olive but with a wide natural fry are large enough at birth to hardy and non-aggressive; all variance of the iridescent lateral accept newly hatched brine points in favour of the Guppy. scales. The intensive in/cross shrimp and should have the breeding by experts for many protection of dense vegetation There are many Guppies years has now produced Gup- as their parents often develop a Societies around the world and if pies of almost every conceiv- taste for them. you are a serious amateur who able colour, pattern and fin would like to learn more about As mentioned before, the this interesting fish; why not shape.
    [Show full text]
  • INTERNATIONAL BULLETIN of BACTERIOLOGICAL NOMENCLATURE and TAXONOMY Vol
    INTERNATIONAL BULLETIN OF BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY Vol. 14, No. 2 April 15, 1964 pp. 87-101 THE PROPOSED CONSERVATION OF THE GENERIC NAME VIBRIO PACINI 1854 AND DESIGNATION OF THE NEOTYPE STRAIN OF VLBRIO CHOLERAE PACINI 1854 Request for an Opinion Rudolph Hugh The George Washington University School of Medicine Department of Microbiology, Washington, D. C. Research Collaborator, American Type Culture Collection SUMMARY. Vibrio Mutter has not been used in the Literature of protozoology for over 100 years. Article 23 of the International Zoolog- ical Code of Nomenclature says "a name that has remained unused as a senior synonym in the primary zoological literature for more than 50 years is to be considered a forgotten name (nomen oblitum)." For a little more than 100 years Vibrio has become established as a commonly accepted generic name in bac- teriology. It is recommended from the stand- point of bacteriology that Vibrio Mutter 1773 be regarded as the name of a genus in zool- ogy and in conformity with the International Code of Zoological Nomenclature be recog- nized as a nomen oblitum and without stand- ing in bacteriological nomenclature. It is further recommended that Vibrio Pacini 1854 be placed in the list of conserved generic names (nomina generum conservanda) with the type species Vibrio cholerae Pacini 1854 and that the specific epithet cholerae in the binary combination Vibrio cholerae Pacini 1854 also be conserved. It is also proposed that the National Collection of Type Cultures (NCTC) strain 8021 (American Type Culture Collec- tion (ATCC) strain 14035) be recognized as the neotype strain of Vibrio cholerae Pacini 1854.
    [Show full text]