Hormone-Induced Spawning of Cultured Tropical Finfishes

Total Page:16

File Type:pdf, Size:1020Kb

Hormone-Induced Spawning of Cultured Tropical Finfishes ADVANCES IN TROPICAL AQUACULTURE. Tahiti, Feb. 20 - March 4 1989 AQUACOP 1FREMER Acres de Colloque 9 pp. 519 F39 49 Hormone-induced spawning of cultured tropical finfishes C.L. MARTE Southeast Asian Fisheries Development Genie. Aquaculture Department, Tig- bauan, ILOILO, Philippines Abstract — Commercially important tropical freshwater and marine finfishes are commonly spawned with pituitary homogenate, human chorionic gonadotropin (HCG) and semi-purified fish gonadotropins. These preparations are often adminis- tered in two doses, a lower priming dose followed a few hours later by a higher resolving dose. Interval between the first and second injections may vary from 3 - 24 hours depending on the species. Variable doses are used even for the same species and may be due to variable potencies of the gonadotropin preparations. Synthetic analogues of luteinizing hormone-releasing hormone (LHRHa) are becoming widely used for inducing ovulation and spawning in a variety of teleosts. For marine species such as milkfish, mullet, sea bass, and rabbitfish, a single LHRHa injection or pellet implant appears to be effective. Multiple spawnings of sea bass have also been obtained following a single injection or pellet implant of a high dose of LHRHa. In a number of freshwater fishes such as the cyprinids, LHRHa alone however has limited efficacy. Standardized methods using LHRHa together with the dopamine antagonists pimozide, domperidone and reserpine have been developed for various species of carps. The technique may also be applicable for spawning marine teleosts that may not respond to LHRHa alone or where a high dose of the peptide is required. Although natural spawning is the preferred method for breeding cultivated fish, induced spawning may be necessary to control timing and synchrony of egg production for practical reasons. INTRODUCTION There are more than 80 species of freshwater and marine fish cultured in Asia. Of these, about 50 species are cultured in tropical South and Southeast Asia (Rabanal, 1988). For most of the cultured species, wild fry from natural sources is insufficient to supply the requirements for culture. Moreover, the fry supply is dependent on the season, and fluctuates with environmental and climatic conditions. Overfishing, pollution and various human activities have caused the destruction of natural spawning and fry grounds contributing largely to 520 C.L. Marte the reduction in fry catch. Of the numerous species under cultivation only a few are bred in captivity. For those species that spontaneously breed under captive condition, the time of spawning is often not predictable. Problems such as viability of naturally spawned eggs and technical difficulties in egg and larvae collection are constraints to mass-scale fry production. Most of the information on the physiological processes involved in the hormonal control of fish reproduction are derived from studies on a few species notably the salmonids, goldfish, and common carp. Although the basic biological principles arising from studies on these fish apply to tropical species, the diversity of fish cultured in the tropics present numerous problems. This paper summarizes the recent developments in induced breeding of impo rtant species cultured in Southeast Asia. PRACTISES IN INDUCED BREEDING Induced breeding of captive fish may be approached in two ways, hormonal and environmental. For most of the tropical cultured fish, the specific environmental cues that trigger ovulation and spawning have not been identified. Asian fish breeders however have succesfully developed methods that stimulate spawning conditions in a few freshwater species. Environmental manipulation to induce ovulation and spawning in fish has been reviewed by Lam (1983) and Lam and Munro (1987). Specific examples of tropical fish where environmental cues are known and used to stimulate breeding activities are cited in Lam (1985). Induction of spawning using hormones provides a direct control over the final stages of the reproductive cycle in teleosts. Hormonal induction of spawning has been the subject of many recent reviews (Harvey and Hoar, 1979; Lam, 1982, 1985; Donaldson and Hunter, 1983; Crim et al., 1987; Abraham, 1988). The physiological mechanisms involved in the final stages of oocyte maturation, ovulation and egg release have been tho- roughly reviewed (Fostier and Jalabert, 1982; Goetz, 1983). Harvey and Hoar (1979) and Davy and Chouinard (1980) discuss traditional practises followed in induced spawning of tropical fish. Ovulation and spawning in teleosts as in other vertebrates are controlled by several interacting factors. Environmental stimuli are transla- ted by the brain into neural signals which result in the release of gonadotropin releasing hormone (GnRH) and/or inhibition of the release of gonadotropin release inhibiting factor (GnRIF) causing the pituitary to secrete gonadotropins (GtH) (Peter, 1982; 1983a; Peter et al., 1986; Lin and Peter, 1986). When a ce rtain GtH level is reached, vitellogenic oocytes undergo the process of final oocyte maturation : the germinal vesicle migrates to the periphery; theca and granulosa cells of the follicle are stimulated to secrete a maturation-inducing steroid (MIS); and the MIS induces germinal vesicle breakdown (GVBD) (Nagahama, 1983; Fostier and Jalabert, 1983; Goetz, 1983). Evidence from studies on goldfish, salmonids and other species point to 17-alpha, 20-beta progesterone (17a, 2013P) as the MIS (Nagahama,1983; Scott and Canario, 1987) although other related progestogens have been 49 - Hormone-induced spawning of cultured tropical finfishes 521 identified (Scott and Canario, 1987). Corticosteroids have also been implicated (Goetz, 1983; Fostier and Jalabert, 1983) but may play only a supportive role (Jalabert, 1976). An additional role for 17a, 20(3P and other progestogens as reproductive pheromones particularly in those species where very high levels are found, has been suggested (Scott and Canario, 1987). Hypophysation and Human chorionic gonadotropin (HCG) administration. Traditional methods of induced breeding involve the injection either intramuscularly or intraperitoneally of crude pituitary extracts. The pituitary extract is usually administered to the female in two doses, a stimulating dose followed after a variable time interval by a second resolving dose. Fresh or preserved pituitary glands from mature fish of the same species (homoplastic) or from other, usually related species (hete- roplastic) are used. In some cases, glands from immature fish have been used but higher doses are required (Harvey and Hoar, 1979). Females that do not respond after the second injection are injected a third or even more doses. Injecting multiple doses however has seldom been successful and females regress probably as a result of stress from excessive handling. Males are injected the same or half the dose given to the female usually at the time the second or resolving dose is administered. Doses are given as fresh or dry weights of pituitary gland per unit body weight of the broodfish or in dose units, defined as the ratio of the body weight of the donor and the body weight of the recipient. Standardization of hypophysa- tion is difficult since the potency of the pituitary extract depends on the age, sex and state of maturity of the donor. Method of collection and the technique used to preserve the pituitary also vary. Species specificity of gonadotropins has been demonstrated (Fontaine et al, 1972; Varikul and Sritongsook, 1981) and is an impo rtant factor to consider. The supply of pituitary glands is a problem and although crude or partially purified pituitary extracts with assayed gonadotropin potency is commercially available, the cost for the-Asian fish breeder is prohibitive. The problems of standardization and cost of hormone preparations are partly solved with the use of mammalian gonadotropin preparations. Two are available in purified form, human chorionic gonadotropin (HCG) and pregnant male serum (PMS). The dosage used varies widely between species and may be related to how closely HCG and PMS resemble the endogenous gonadotropin in each species (Lam, 1982). HCG has been successfully used in most species bred in Southeast Asia (examples are given in the succeeding sections). HCG is available and convenient to use although still expensive. The possibility that injecting HCG and pituitary extracts for several consecutive years to the same broodstock may result in the development of an immune response has been pointed out (Lam, 1982; Billard et al 1987). Luteinizing hormone-releasing hormone (LHP/-l} LHRH, a hypothalamic decapeptide and its synthetic analogues have been shown to stimulate gonadotropin secretion in teleosts (Crim et al., 1987; Peter 1983a and b; Lin and Peter, 1986). The effectiveness of LHRH analogues in inducing ovulation and spawning of cultured fish was first 522 C.L. Marte demonstrated in various species of carps by Chinese researchers (Anon 1977). The practise however was not widely adopted because consistent results were not obtained. Recent studies have demonstrated the presence of a gonadotropin- release inhibiting factor in goldfish. Further evidences identify GRIF to be the catecholamine dopamine (for review, see Peter et aL, 1986). GRIF's inhibitory effect on GtH release is blocked by administration of dopamine receptor antagonists such as pimozide or metoclopramide (Chang et al., 1984; Sokolowska et aL,1984, 1985; Peter et al., 1985). Administration of dopamine antagonists potentiates LHRHa
Recommended publications
  • Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
    Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution.
    [Show full text]
  • Coral Reef Fishes: Caribbean, Indian Ocean and Pacific Ocean Including the Red Sea PDF Book View Product
    CORAL REEF FISHES: CARIBBEAN, INDIAN OCEAN AND PACIFIC OCEAN INCLUDING THE RED SEA PDF, EPUB, EBOOK Ewald Lieske,Robert Myers | 400 pages | 15 Jan 2002 | Princeton University Press | 9780691089959 | English | New Jersey, United States Coral Reef Fishes: Caribbean, Indian Ocean and Pacific Ocean Including the Red Sea PDF Book View Product. Performance and Analytics. Coral reef with tropical fish, Marsa Alam, Egypt. It is a grazer, feeding on algae, sponges, and coral. Most reef-building corals contain microscopic symbiotic algae called zooxanthellae, which live inside the coral tissue. More information about this seller Contact this seller 8. Reef with school of tropical fish and Elkhorn coral, Caribbean sea. Published by Princeton Coral reef and tropical fish in Red Sea. Condition: Near Fine. High res. Colorful tropical fish swimming over coral reef with blue sea background. As with most other triggers, the clown is an aggressive feeder, feeding mainly on crustaceans and mollusks. Closeup of colorful tropical Butterfly fish swimming above coral reef. Panorama in a coral reef with shoal of fish. The fish are feeding on minute plankton. A Pair of Masked butterflyfish chaetodon semilarvatus over a coral reef. In addition, this guide provides clues for quick and proper identification. Coral reef ecosystems are influenced by changing weather and oceanographic factors, including temperature, currents, carbonate chemistry, nutrients, and productivity. From Contributor separated by comma. Gray Angelfish Pomacanthus arcuatus As with many angelfish species, the gray angelfish undergoes a color change as it grows. Land- based sources of pollution, overfishing, recreational overuse, and invasive species impact many coastal areas adjacent to urban areas.
    [Show full text]
  • Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
    Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy .
    [Show full text]
  • Fish As Major Carbonate Mud Producers and Missing Components of the Tropical Carbonate Factory
    Fish as major carbonate mud producers and missing components of the tropical carbonate factory Chris T. Perrya,1, Michael A. Saltera, Alastair R. Harborneb, Stephen F. Crowleyc, Howard L. Jelksd, and Rod W. Wilsonb,1 aSchool of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; bBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom; cDepartment of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom; and dUS Geological Survey, 7920 North West 71st Street, Gainesville, FL 32653 Edited* by George N. Somero, Stanford University, Pacific Grove, CA, and approved January 6, 2011 (received for review November 2, 2010) Carbonate mud is a major constituent of recent marine carbonate nite and Mg-calcite mud-grade carbonate occur and thus budget- sediments and of ancient limestones, which contain unique records ary considerations need to accommodate production from a of changes in ocean chemistry and climate shifts in the geological range of potential sources. This issue has important geo-environ- past. However, the origin of carbonate mud is controversial and mental implications because carbonate muds are major constitu- often problematic to resolve. Here we show that tropical marine ents of limestones and are volumetrically important in most fish produce and excrete various forms of precipitated (nonskele- modern shallow marine carbonate environments (17). Further- tal) calcium carbonate from their guts (“low” and “high” Mg-calcite more, the presence of Mg-calcite muds in marine carbonates is and aragonite), but that very fine-grained (mostly <2 μm) high Mg- considered critical to preserving primary sediment textures and > calcite crystallites (i.e., 4 mole % MgCO3) are their dominant ex- fabrics (15), thus influencing sediment porosity and permeability cretory product.
    [Show full text]
  • Tropical Fish Now That You Have Set up Your Aquarium and Are Starting to Think About Adding Fish, You Have Many Choices to Choose From
    Tropical Fish Now that you have set up your aquarium and are starting to think about adding fish, you have many choices to choose from. One specific type of fish is the tropical fish, found in tropical waters all over the world and in areas near the equator. They can live in fresh water such as ponds, lakes, streams and even oceans that are salt water. In home aquariums, tropical fish are usually kept in heated fish tanks or in areas where the ambient room temperature is between 70°F - 82°F. As you make your decisions, be sure to research their compatibility, hardiness and if they are a schooling fish or not. Selecting the right fish will help ensure that you have hours of enjoyment and success. Today, many freshwater fish are captive bred either in fish farms or by hobbyists, making them readily available and easy to find. Popular freshwater tropical fish include Bettas, Guppies, Tetras, Swordtails, Platys, Barbs, Mollies and Corydoras among others. Sometimes people starting out in the aquatic hobby may not always provide their fish with ideal living conditions. Fish recommended for beginners and new aquariums must be durable and able to handle sometimes-poor water quality and stressful living conditions. The list included here are freshwater fish and will provide you with a nice assortment to consider. Cold -Water Fish The most common cold-water fish species is the goldfish but there are many other fish species that do not require a heated tank such as White Cloud Mountain Minnows, Bloodfin Tetras, and Rosy Barbs among others; where their preferred water temperature is between 64 to 72 degrees F.
    [Show full text]
  • Clean &Unclean Meats
    Clean & Unclean Meats God expects all who desire to have a relationship with Him to live holy lives (Exodus 19:6; 1 Peter 1:15). The Bible says following God’s instructions regarding the meat we eat is one aspect of living a holy life (Leviticus 11:44-47). Modern research indicates that there are health benets to eating only the meat of animals approved by God and avoiding those He labels as unclean. Here is a summation of the clean (acceptable to eat) and unclean (not acceptable to eat) animals found in Leviticus 11 and Deuteronomy 14. For further explanation, see the LifeHopeandTruth.com article “Clean and Unclean Animals.” BIRDS CLEAN (Eggs of these birds are also clean) Chicken Prairie chicken Dove Ptarmigan Duck Quail Goose Sage grouse (sagehen) Grouse Sparrow (and all other Guinea fowl songbirds; but not those of Partridge the corvid family) Peafowl (peacock) Swan (the KJV translation of “swan” is a mistranslation) Pheasant Teal Pigeon Turkey BIRDS UNCLEAN Leviticus 11:13-19 (Eggs of these birds are also unclean) All birds of prey Cormorant (raptors) including: Crane Buzzard Crow (and all Condor other corvids) Eagle Cuckoo Ostrich Falcon Egret Parrot Kite Flamingo Pelican Hawk Glede Penguin Osprey Grosbeak Plover Owl Gull Raven Vulture Heron Roadrunner Lapwing Stork Other birds including: Loon Swallow Albatross Magpie Swi Bat Martin Water hen Bittern Ossifrage Woodpecker ANIMALS CLEAN Leviticus 11:3; Deuteronomy 14:4-6 (Milk from these animals is also clean) Addax Hart Antelope Hartebeest Beef (meat of domestic cattle) Hirola chews
    [Show full text]
  • The Effect of Vacuum Packaging on Histamine Changes of Milkfish Sticks
    journal of food and drug analysis 25 (2017) 812e818 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.jfda-online.com Original Article The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures Hsien-Feng Kung a, Yi-Chen Lee b, Chiang-Wei Lin b, Yu-Ru Huang c, * Chao-An Cheng d, Chia-Min Lin b, Yung-Hsiang Tsai b, a Department of Biotechnology, Tajen University, Pingtung, Taiwan, ROC b Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan, ROC c Department of Food Science, National Penghu University of Science and Technology, Taiwan, ROC d Department of Food Science, Kinmen University, Kinmen, Taiwan, ROC article info abstract Article history: The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the hista- Received 28 July 2016 mine related quality of milkfish sticks stored at different temperatures (À20C, 4C, 15C, and Received in revised form 25C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile 20 December 2016 basic nitrogen (TVBN), and histamine contents increased as storage time increased when the Accepted 27 December 2016 PEP and VP samples were stored at 25C. At below 15C, the APC, TVBN, pH, and histamine Available online 14 February 2017 levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at À20C Keywords: for 2 months were thawed and stored at 25 C, VP retarded the increase of histamine in milkfish histamine sticks as compared to PEP.
    [Show full text]
  • Poisoned Waters
    POISONED WATERS How Cyanide Fishing and the Aquarium Trade Are Devastating Coral Reefs and Tropical Fish Center for Biological Diversity For the Fishes June 2016 Royal blue tang fish / H. Krisp Executive Summary mollusks, and other invertebrates are killed in the vicinity of the cyanide that’s squirted on the reefs to he release of Disney/Pixar’s Finding Dory stun fish so they can be captured for the pet trade. An is likely to fuel a rapid increase in sales of estimated square meter of corals dies for each fish Ttropical reef fish, including royal blue tangs, captured using cyanide.” the stars of this widely promoted new film. It is also Reef poisoning and destruction are expected to likely to drive a destructive increase in the illegal use become more severe and widespread following of cyanide to catch aquarium fish. Finding Dory. Previous movies such as Finding Nemo The problem is already widespread: A new Center and 101 Dalmatians triggered a demonstrable increase for Biological Diversity analysis finds that, on in consumer purchases of animals featured in those average, 6 million tropical marine fish imported films (orange clownfish and Dalmatians respectively). into the United States each year have been exposed In this report we detail the status of cyanide fishing to cyanide poisoning in places like the Philippines for the saltwater aquarium industry and its existing and Indonesia. An additional 14 million fish likely impacts on fish, coral and other reef inhabitants. We died after being poisoned in order to bring those also provide a series of recommendations, including 6 million fish to market, and even the survivors reiterating a call to the National Marine Fisheries are likely to die early because of their exposure to Service, U.S.
    [Show full text]
  • 4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska 4-H Clubs: Historical Materials and 4-H Youth Development Publications 1987 4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series Follow this and additional works at: http://digitalcommons.unl.edu/a4hhistory "4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series" (1987). Nebraska 4-H Clubs: Historical Materials and Publications. 372. http://digitalcommons.unl.edu/a4hhistory/372 This Article is brought to you for free and open access by the 4-H Youth Development at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska 4-H Clubs: Historical Materials and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. RD2178 32444 cy~ Nebraska Cooperative Extension Service 4-H 280 s 633 r6~ 11/i:z. na. ~?0 Tropical Fish Part of the Nebraska 4-H Small Animal and Pet Series Issued in furtherance of Cooperative Ext ension work, Acts of May 8 and June 30, 1 91 4 , in cooperation with the f e. ..e \ U.S . Department of Agriculture . leo E. lucas, Director of Cooperative Extension Service, University of Nebraska, : . · ; a Inst itut e of Agriculture and Natural Resources. ~• • • ... .... o The Coopera tive Extenaion Service providet information a~d educational programs to all people without rega rd to race, color, national origin, s ax or handic ap. A Note To Parents and Leaders Table of Contents · Welcome to an exciting project in aquatic Purpose of the Tropical Fish Project 3 -science.
    [Show full text]
  • Muscle Strain in Swimming Milkfish
    The Journal of Experimental Biology 202, 529–541 (1999) 529 Printed in Great Britain © The Company of Biologists Limited 1999 JEB1633 MUSCLE STRAIN HISTORIES IN SWIMMING MILKFISH IN STEADY AND SPRINTING GAITS STEPHEN L. KATZ*, ROBERT E. SHADWICK AND H. SCOTT RAPOPORT Center for Marine Biotechnology and Biomedicine and Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0204, USA *Present address and address for correspondence: Zoology Department, Duke University, PO Box 90325, Durham, NC 27708-0325, USA (e-mail: [email protected]) Accepted 10 December 1998; published on WWW 3 February 1999 Summary Adult milkfish (Chanos chanos) swam in a water-tunnel over that speed range, while tail-beat frequency increased flume over a wide range of speeds. Fish were instrumented by 140 %. While using a sprinting gait, muscle strains with sonomicrometers to measure shortening of red and became bimodal, with strains within bursts being white myotomal muscle. Muscle strain was also calculated approximately double those between bursts. Muscle strain from simultaneous overhead views of the swimming fish. calculated from local body bending for a range of locations This allowed us to test the hypothesis that the muscle on the body indicated that muscle strain increases rostrally shortens in phase with local body bending. The fish swam to caudally, but only by less than 4 %. These results suggest at slow speeds [U<2.6 fork lengths s−1 (=FL s−1)] where only that swimming muscle, which forms a large fraction of the peripheral red muscle was powering body movements, and body volume in a fish, undergoes a history of strain that is also at higher speeds (2.6>U>4.6 FL s−1) where they similar to that expected for a homogeneous, continuous adopted a sprinting gait in which the white muscle is beam.
    [Show full text]
  • Registered Aquaculture Farms Region I
    REGISTERED AQUACULTURE FARMS As of February 4, 2019 Control No. Farm Code Name of Farm Species Cultured No. TOTAL NO. OF REGISTERED FARMS - 486 REGION I - 109 1 006180 R1-LUN-132 Ceyu Aqua Farm Milkfish, Siganid 2 006181 R1-PAN-041 Julie Ann Farms Milkfish 3 006182 R1-PAN-117 Julie Ann Farms Milkfish 4 006178 R1-PAN-116 Rubjoe Aqua Farm Milkfish 5 006230 R1-PAN-112 Feedlines Agri-Aqua Corp. Milkfish 6 006231 R1-PAN-093 Super Mega Sea Horse Corp. Milkfish 7 006232 R1-PAN-094 Lucky Fortune Group Inc. Milkfish 8 006233 R1-PAN-095 Phil Mega Fish Corp. Milkfish 9 006257 R1-LUN-120 Panergo Gloria Aquafarm Milkfish, P. vannamei 10 006262 R1-PAN-134 Redialyn Arizo Farm Milkfish 11 006263 R1-PAN-133 Leonzon Fish Farm Milkfish 12 007267 R1-PAN-135 Villanueva Fish and Salt Farm Milkfish 13 007270 R1-PAN-065 Tagumpay Aqua Farm Milkfish 14 007271 R1-PAN-066 Borlongan Aqua Farm P. vannamei, Milkfish 15 007272 R1-PAN-067 Tagumpay Aqua Farm P. vannamei. Milkfish 16 007274 R1-PAN-085 Marina Bay Farms Milkfish 17 007275 R1-PAN-118 Marlo Francisco Aqua Farm P. vannamei, Milkfish 18 007306 R1-PAN-136 FSI Power Bullets Milkfish Bolinao Marine Science Institure 007307 19 R1-PAN-137 (BMSI) Milkfish 20 006299 R1-PAN-138 Catabay Fish Farm Milkfish 006301 R1-PAN-140 21 Aquino Farm Milkfish 22 007308 R1-PAN-141 Aquino Farm Milkfish 23 007309 R1-ILS-043 ACGR Aqua Farm Tilapia 007310 R1-PAN-075 24 Aquino Farm Milkfish 25 007311 R1-PAN-078 Aquino Farm Milkfish, P.
    [Show full text]
  • Use of Fine Mesh Nets Exportation of Bangus (Milkfish)
    imprisonment ranging from 6 months to 2 years. • The fishing vessels, fishing equipment, and catch shall be forfeited. Use of fine mesh FAO 155, s1986 nets • A fine of not less than PhP500.00 but • A fine from PhP2,000.00 to • Fine has increased not more than PhP5,000.00 or PhP20,000.00 or imprisonment from 6 but duration of imprisonment of not less than 6 months to 2 years, or both such fine and imprisonment has months to 4 years, or both such fine imprisonment at the discretion of the decreased. and imprisonment, at the discretion of court: Provided, that if the offense is Included also as the court: Provided, however, that the committed by a commercial fishing liable to the law Director of BFAR is empowered to vessel, the boat captain and the master are the boat impose upon the offender an fisherman shall also be subjected to the captain, master administrative fine of not more than penalties provided herein; Provided, fisherman and the PhP5,000.00 including the confiscation further, that the owner/operator of the owner/operator of of the fishery nets or paraphernalia and commercial fishing vessel who violates the commercial the fish catch. this provision shall be subjected to the fishing vessel. same penalties herein: Provided, finally, that the Department is hereby empowered to impose upon the offender an administrative fine and/or cancel his permit or license or both. Exportation of Section 36 PD 704 bangus • Imprisonment of 1 year to 5 years or a • Imprisonment of 8 years, confiscation • Severity of (milkfish) fry fine of PhP1,000.00 to PhP5,000.00 or of the breeders, spawners, eggs or fry or penalty has both.
    [Show full text]