News Letter Final
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I What Is a Crocodilian?
I WHAT IS A CROCODILIAN? Crocodilians are the only living representatives of the Archosauria group (dinosaurs, pterosaurs, and thecodontians), which first appeared in the Mesozoic era. At present, crocodiliams are the most advanced of all reptiles because they have a four-chambered heart, diaphragm, and cerebral cortex. The extent morphology reflects their aquatic habits. Crocodilians are elongated and armored with a muscular, laterally shaped tail used in swimming. The snout is elongated, with the nostrils set at the end to allow breathing while most of the body remains submerged. Crocodilians have two pairs of short legs with five toes on the front and four tows on the hind feet; the toes on all feet are partially webbed. The success of this body design is evidenced by the relatively few changes that have occurred since crocodilians first appeared in the late Triassic period, about 200 million years ago. Crocodilians are divided into three subfamilies. Alligatorinae includes two species of alligators and five caiman. Crocodylinae is divided into thirteen species of crocodiles and on species of false gharial. Gavialinae contains one species of gharial. Another way to tell the three groups of crocodilians apart is to look at their teeth. II PHYSICAL CHARACTERISTICS A Locomotion Crocodilians spend time on land primarily to bask in the sun, to move from one body of water to another, to escape from disturbances, or to reproduce. They use three distinct styles of movement on land. A stately high walk is used when moving unhurried on land. When frightened, crocodilians plunge down an embankment in an inelegant belly crawl. -
Crocodiles As a Resource For" the Tropics
SF Managing 7topical Animal Resources .C7S ~~~3 'Ocodiles as aResource for the 'Ilopics 1 l:oogk - .'. ~ d ..Nationa[ Acadt11!..~ Press The National Academy Preu was created by the National Academy of Sciences to publish the reports issued by the Academy and by the National Academy of Engineering, the Institute of Medicine, and the National Research Council, all operating under the charter granted to the National Academy of Sciel\ces by the Congress of the United States. REFERENCE COpy .FOR LIBRARY USE ONi.Y Managing Tropical Animal Resources Crocodiles as a Resource for" the Tropics : Report of an Ad Hoc Panel ~f the Advisory Committee on Technology Innovation Board on Science and Technology for International Development Office of International Affairs National Research Council In Cooperation with the Division ofWildlife, Department of Lands and Environment, Papua New Guinea .', ;''': .~ " I : PROPERTY OF NAS-NA~ JUL ti 1983 LIBRARY: NATIONAL ACADEMY PRESS Washington, D.C. 1983 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the Councils of the National Academy ofSciences, the National Academy of Engineering, and the Institute of Medicine. The members of the commillee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors acc;ording to the pro cedures approved by a Report Review Commillee consisting of members of the National Academy ofSciences, the National Academy ofEngineering, and the Institute of Medicine. The National Research Council was established by the National Academy of SCiences in 1916to associate the broad community of science and technology with the Academy's pur poses of furthering knowledge and of advising the federal government. -
Using Environmental DNA to Detect Estuarine Crocodiles, a Cryptic
Human–Wildlife Interactions 14(1):64–72, Spring 2020 • digitalcommons.usu.edu/hwi Using environmental DNA to detect estuarine crocodiles, a cryptic-ambush predator of humans Alea Rose, Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0909, Australia Yusuke Fukuda, Department of Environment & Natural Resources, Northern Territory Govern- ment, P.O. Box 496, Palmerston, Northern Territory 0831, Australia Hamish A. Campbell, Research Institute of Livelihoods and the Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia [email protected] Abstract: Negative human–wildlife interactions can be better managed by early detection of the wildlife species involved. However, many animals that pose a threat to humans are highly cryptic, and detecting their presence before the interaction occurs can be challenging. We describe a method whereby the presence of the estuarine crocodile (Crocodylus porosus), a cryptic and potentially dangerous predator of humans, was detected using traces of DNA shed into the water, known as environmental DNA (eDNA). The estuarine crocodile is present in waterways throughout southeast Asia and Oceania and has been responsible for >1,000 attacks upon humans in the past decade. A critical factor in the crocodile’s capability to attack humans is their ability to remain hidden in turbid waters for extended periods, ambushing humans that enter the water or undertake activities around the waterline. In northern Australia, we sampled water from aquariums where crocodiles were present or absent, and we were able to discriminate the presence of estuarine crocodile from the freshwater crocodile (C. johnstoni), a closely related sympatric species that does not pose a threat to humans. -
FOTAS Fish Tales 05.4
In this issue: 3 The Future of the Fed- eration of Texas Aquarium Societies Greg Steeves 8 FOTAS BAP 17 FOTAS HAP 24 FOTAS CARES Greg Steeves 25 Spawning the Buffalo- Volume 5 Issue 4 head Cichlid The FOTAS Fish Tales is a quarterly publication of the Federation of Texas Duc Nguyen Aquarium Societies a non-profit organization. The views and opinions contained within are not necessarily those of the editors and/or the officers 27 GloFish, Love them or and members of the Federation of Texas Aquarium Societies. Hate them, They are here to stay! FOTAS Fish Tales Editor: Gerald Griffin [email protected] Gerald Griffin Fish Tales Submission Guidelines 31 What the Heck is an ESU? Articles: Leslie Dick Please submit all articles in electronic form. We can accept most popular software formats and fonts. Email to [email protected]. Photos and 35 Spawning Julido- graphics are encouraged with your articles! Please remember to include the photo/graphic credits. Graphics and photo files may be submitted in chromis dickfieldi any format, however uncompressed TIFF, JPEG or vector format is pre- Gerald Griffin ferred, at the highest resolution/file size possible. If you need help with graphics files or your file is too large to email, please contact me for alterna- 37 Meet the San Antonio tive submission info. Aquatic Plant Club Art Submission: Chris Lewis Graphics and photo files may be submitted in any format. However, uncom- pressed TIFF, JPEG or vector formats are preferred. Please submit the 39 Participating in the FO- highest resolution possible. TAS BAP and HAP Next deadline…… Gerald Griffin January 15th 2016 On the Cover: COPYRIGHT NOTICE GloFish - Photos by York- All Rights Reserved. -
Nagarjunasagar Srisailam Tiger Reserve
Nagarjunasagar Srisailam Tiger Reserve April 26, 2021 Nagarjunasagar Srisailam Tiger Reserve The Nagarjunasagar Srisailam Tiger Reserve’s tiger population is increasing (NSTR) The National Tiger Reserve of India (NSTR) is the country’s largest. In Andhra Pradesh and Telangana, the reserve spans five districts: Kurnool, Prakasam, Guntur, Nalgonda, and Mahbubnagar. 75 percent of the world’s tigers are found in India. It was notified in the year of 1978 and came under the protection of Project Tiger in 1983. In 1992, it was retitled as Rajiv Gandhi Wildlife Sanctuary. Geographical Aspects The Tiger Reserve is located in Andhra Pradesh and Telangana and spans five districts. The Nallamala Hills dominate the landscape. The reserve contains the multipurpose reservoirs Srisailam and Nagarjunasagar. The Krishna River runs through the reserve’s basin. Fauna It is home to a diverse range of wild animals. Many other animals, including leopards, rusty-spotted cats, pangolins, Mugger Crocodiles, Indian Rock Pythons, and innumerable bird species, can be found here, in addition to the Bengal Tiger, which is the apex predator. Flora A wide range of trees, from tropical dry mixed deciduous forest in the south to southern thorn forest in the south. This region is also home to a diverse range of shrubs and bamboo thickets. The main types of forest biomes in the reserve are: southern tropical dry mixed deciduous forest, Hardwickia forest and Deccan thorn scrub forests with much Euphorbia scrub. Important plant species here are: Anogeissus latifolia (axlewood), Cleisthanthus collinus (odcha), Terminalia spp., Pterocarpus marsupium, Hardwickia binata (anjan tree), Boswellia serrata (Indian frankincense or salai), Tectona grandis (teak), Mundulea sericea and Albizia spp. -
Nagarjuna Sagar-Srisailam Tiger Reserve , India: an Update
NSTR Update 4/03 (H.Reddy) NAGARJUNA SAGAR-SRISAILAM TIGER RESERVE (NSTR), INDIA AN UPDATE Harsha S. Reddy*, STF grantee 1998-1999 Table of Contents Background.................................................................................................2 Summary of Previous Work........................................................................2 Ecological Status of NSTR .........................................................................3 Status of Research in NSTR .......................................................................4 1. Eco-Research and Monitoring (ERM) Lab ..........................................4 2. Eco Van ................................................................................................7 3. All-Taxa Biodiversity Inventory (ATBI) .............................................8 4. Environmental Education Center (EEC) ..............................................9 Tiger Research and Conservation ..............................................................10 People and Contact Information .................................................................12 The Chenchus (a tribal group within NSTR)..............................................13 Image 1. The author with a friend, Malleswari, in the Chenchu village of Chinthala. * This report reflect the views and observations of the author alone, and all photographs are copyrighted by him unless otherwise noted. Please do not reproduce them without permission. ** The author can be reached at [email protected] 1 of 16 -
4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska 4-H Clubs: Historical Materials and 4-H Youth Development Publications 1987 4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series Follow this and additional works at: http://digitalcommons.unl.edu/a4hhistory "4-H 280 Tropical Fish : Part of the Nebraska 4-H Small Animal and Pet Series" (1987). Nebraska 4-H Clubs: Historical Materials and Publications. 372. http://digitalcommons.unl.edu/a4hhistory/372 This Article is brought to you for free and open access by the 4-H Youth Development at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska 4-H Clubs: Historical Materials and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. RD2178 32444 cy~ Nebraska Cooperative Extension Service 4-H 280 s 633 r6~ 11/i:z. na. ~?0 Tropical Fish Part of the Nebraska 4-H Small Animal and Pet Series Issued in furtherance of Cooperative Ext ension work, Acts of May 8 and June 30, 1 91 4 , in cooperation with the f e. ..e \ U.S . Department of Agriculture . leo E. lucas, Director of Cooperative Extension Service, University of Nebraska, : . · ; a Inst itut e of Agriculture and Natural Resources. ~• • • ... .... o The Coopera tive Extenaion Service providet information a~d educational programs to all people without rega rd to race, color, national origin, s ax or handic ap. A Note To Parents and Leaders Table of Contents · Welcome to an exciting project in aquatic Purpose of the Tropical Fish Project 3 -science. -
Crocodiles Alter Skin Color in Response to Environmental Color Conditions
www.nature.com/scientificreports OPEN Crocodiles Alter Skin Color in Response to Environmental Color Conditions Received: 3 January 2018 Mark Merchant1, Amber Hale2, Jen Brueggen3, Curt Harbsmeier4 & Colette Adams5 Accepted: 6 April 2018 Many species alter skin color to varying degrees and by diferent mechanisms. Here, we show that Published: xx xx xxxx some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60–90 minutes. The response is visually- mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops. Te rapid alteration of skin color is well known among a wide assortment of ectothermic vertebrates and inver- tebrates1. Adaptive skin color changes may occur for a variety of reasons, including communication, thermal regulation, and crypsis1. Te modifcation of skin pigmentation is achieved by either physiological or morpho- logical mechanisms1. -
Philippine Crocodile Crocodylus Mindorensis Merlijn Van Weerd
Philippine Crocodile Crocodylus mindorensis Merlijn van Weerd Centre of Environmental Science, Leiden University, Abel Tasmanstraat 5bis, Utrecht 3531 GR, Netherlands ([email protected]) Common Names: Philippine crocodile (English), buwaya 2009 IUCN Red List: CR (Critically Endangered. Criteria (general Philippines), bukarot (northern Luzon) A1c. Observed decline in extent of occurrence >80% in 3 generations. C2a. Less than 250 adults in the wild, populations highly fragmented and declining; IUCN 2009) (last assessed Range: Philippines in 1996). Taxonomic Status The Philippine crocodile was described in 1935 by Karl Schmidt on the basis of a type specimen and three paratypes from the island of Mindoro (Schmidt 1935, 1938). Schmidt also described the closely related New Guinea freshwater crocodile (Crocodylus novaeguineae) in 1928 and later made a comparison of morphological differences between C. mindorensis, C. novaeguineae and C. porosus, maintaining C. mindorensis as a separate species (1956). However the Philippine crocodile has long been treated as C. novaeguineae mindorensis, a sub-species of the New Guinea crocodile, by other authorities. Hall (1989) provided new evidence of the distinctness of the Philippine crocodile and nowadays C. mindorensis is generally treated as a full species endemic to the Philippines. Figure 1. Distribution of Crocodylus mindorensis. Figure 2. Juvenile C. mindorensis in Dunoy Lake, in Northern Sierra Madre National Park, northern Luzon. Photograph: Merlijn van Weerd. Conservation Overview CITES: Appendix I Ecology and Natural History CSG Action Plan: The Philippine crocodile is a relatively small freshwater Availability of recent survey data: Adequate crocodile. Although much is still unknown, studies at two Need for wild population recovery: Highest captive breeding facilities [Palawan Wildlife Rescue and Potential for sustainable management: Low Conservation Centre (PWRCC), Palawan Island (Ortega Van Weerd, M. -
December 11, 2012 London Aquaria Society Ho! Ho! Ho! Merry Christmas Everyone & Have a Safe and Happy New Year
Volume 56, Issue 4 December 11, 2012 London Aquaria Society Ho! Ho! Ho! www.londonaquariasociety.com Merry Christmas Everyone & have a safe and Happy New Year POECILIA RETICULATA This is a very prolific fish, must do the choosing for them. The Guppy/Millions Fish easily bred in the aquarium. If Guppies are a good com- proper attention has been paid bination along with your favour- By: S. Pollard to water conditions and diet, ite kind of plants in a show tank. January 1990, London Aquaria these fish reach sexual maturity While Guppies do pick away at Society in just a few months. The ges- the micro-food which flourishes Submitted by: Annette & Ron tation period, (depending on upon plant leaves they do not Bishop temp.) is from 4-6 weeks. The eat the plant itself; neither will spawn sizes range in number they move the gravel around the The original basic colour from 20-100, (another good way some other species do. of P. Reticulata was a brownish reason for a large tank). The Beautiful, lively, easily bred, olive but with a wide natural fry are large enough at birth to hardy and non-aggressive; all variance of the iridescent lateral accept newly hatched brine points in favour of the Guppy. scales. The intensive in/cross shrimp and should have the breeding by experts for many protection of dense vegetation There are many Guppies years has now produced Gup- as their parents often develop a Societies around the world and if pies of almost every conceiv- taste for them. you are a serious amateur who able colour, pattern and fin would like to learn more about As mentioned before, the this interesting fish; why not shape. -
Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus Intermedius) at the El Frío Biological Station, Venezuela
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff RESEARCH ARTICLE Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela Natalia A. Rossi Lafferriere1,2☯*, Rafael Antelo3,4,5☯, Fernando Alda4,6, Dick Mårtensson7, Frank Hailer8,9, Santiago Castroviejo-Fisher10, José Ayarzagüena5†, Joshua R. Ginsberg1,11, Javier Castroviejo5,12, Ignacio Doadrio4, Carles Vilá13, George Amato2 1 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America, 2 Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York, United States of America, 3 Fundación Palmarito Casanare, Bogotá, Colombia, 4 Dpto. Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 5 Estación Biológica El Frío, Apure, Venezuela, 6 LSU Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America, 7 Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden, 8 School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, United Kingdom, 9 Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United OPEN ACCESS States of America, 10 Lab. de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande Citation: Rossi Lafferriere NA, Antelo R, Alda F, do Sul (PUCRS), Porto Alegre, Brasil, 11 Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America, 12 Asociación Amigos de Doñana, Seville, Spain, 13 Conservation and Evolutionary Mårtensson D, Hailer F, Castroviejo-Fisher S, et al. -
News L Final.Pmd
EPTRI - ENVIS Newsletter Vol. 13 No.2, 2007 The Eastern Ghats EPTRI - ENVIS Newsletter Biodiversity of Eastern Ghats Contents Scolopendra amazonica Millipede Sp. Page No 1. Faunal Diversity of Nallamalai hill ranges of Eastern Ghats, Andhra Pradesh, India.......................................................... 2 2. Taxonomic and Molecular approach in Identification or Discovery of Species.......................................................... 8 3. Threats to Biodiversity of Eastern Ghats: The need for conservation and management measures........................... 9 4. Abstracts on faunal biodiversity of Eastern Ghats.............. 11 Hypolimnas bolina jacintha Urothemis signata signata Foreword The theme ‘Biodiversity of Eastern Ghats’ is so unusually large in extent or scope that one has to preset the range which one wants to discuss. As a sequel, therefore, it was decided to devote two issues of this Newsletter, one each on the sub-themes: phytological biodiversity and Rhagodes nigrocinctus Gasteracantha geminate faunal biodiversity. The last issue [Vol. 13, No.1 2007] comprehensively covered the phytodiversity of the Eastern Ghats with a precious article co-authored by eminent scientists. This issue attempts to focus on faunal diversity of the region with an article by a Scientist from Project Tiger, Department of Forests, Government of Andhra Pradesh highlighting Geochelone elegans Ardeotis nigriceps the conservation and management of faunal diversity in Nallamalai Hills of Eastern Ghats : a known biodiversity rich zone of the ecologically fragile terrain. Modern biological approach in taxonomy is also briefly discussed to understand the range of faunal species that causes diversity. Some selected abstracts on the theme are also given. ENVIS Coordinator Panthera tigris We plan to bring out the next issue of the Newsletter on Geoscientific aspects of Eastern Ghats and invite articles, write-ups and news items on the theme from our readers.