Exposure of Native Bees Foraging in an Agricultural Landscape to Current-Use Pesticides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemicals Implicated in Colony Collapse Disorder
Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM. -
Bumble Bee Pollen Foraging on Lupine (Lupinus: Fabaceae)
BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts In Biology May 2000 BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. Approved by the Master's Thesis Committee: Michael R. Mesler, Major Professor Michael &mann, Committee Member P. Dawn Goley, Committee Member Casey Lu, Committee Member Milton J. Boyd, Graduate Coordinator Ronald Fritzsche, Dean for Research and Graduate Studies ABSTRACT Bumble bee pollen foraging on lupine (Lupinus: Fabaceae): within-whorl decisions Birgit Semsrott Bumble bees (Bombus: Apidae) can maximize foraging efficiency in a resource-patchy environment by visiting mainly rewarding flowers and avoiding those that are either empty or less rewarding. This study investigated how bumble bees avoid unrewarding flowers of lupine (Lupinus: Fabaceae), a plant in which the pollen is hidden from view. I recorded whether bees left a whorl upon encountering various situations. Bumble bees clearly discriminated against flowers that showed unambiguous visual signs of being unrewarding. In the absence of any visual cues, bees made use of a presumably predictable spatial distribution of pollen within whorls. They were able to assess the amount of pollen collected per flower, and they departed upon encountering one or more unrewarding flowers. -
Rules and Regulations Federal Register Vol
61735 Rules and Regulations Federal Register Vol. 69, No. 203 Thursday, October 21, 2004 This section of the FEDERAL REGISTER Background authorized by the Plant Protection Act contains regulatory documents having general Under the Honeybee Act (7 U.S.C. concerning the importation of certain applicability and legal effect, most of which bees, beekeeping byproducts, and used are keyed to and codified in the Code of 281–286), the Secretary of Agriculture is authorized to prohibit or restrict the beekeeping equipment are contained in Federal Regulations, which is published under 7 CFR part 319, §§ 319.76 through 50 titles pursuant to 44 U.S.C. 1510. importation of honeybees and honeybee semen to prevent the introduction into 319.76–8 (referred to below as the The Code of Federal Regulations is sold by the United States of diseases and ‘‘pollinator regulations’’). the Superintendent of Documents. Prices of parasites harmful to honeybees and of The pollinator regulations have new books are listed in the first FEDERAL undesirable species such as the African governed the importation of live bees REGISTER issue of each week. honeybee. The Secretary has delegated other than honeybees, dead bees of the responsibility for administering the superfamily Apoidea, certain Honeybee Act to the Administrator of beekeeping byproducts, and beekeeping DEPARTMENT OF AGRICULTURE the Animal and Plant Health Inspection equipment. These regulations have been intended to prevent the introduction of Animal and Plant Health Inspection Service (APHIS) of the U.S. Department exotic bee diseases and parasites that, if Service of Agriculture (USDA). Regulations established under the Honeybee Act are introduced into the United States, could cause substantial reductions in 7 CFR Parts 319 and 322 contained in the Code of Federal Regulations (CFR), Title 7, part 322 pollination by bees. -
How to Process Raw Honeybee Pollen Into Food for Humans, Argentina
How to process raw honeybee pollen into food for humans, Argentina Source Food and Agriculture Organization of the United Nations (FAO) Keywords Beekeeping, value added product, pollen, pollen grains, human nutrition Country of first practice Argentina ID and publishing year 8755 and 2016 Sustainable Development Goals No poverty, good health and well-being, and decent work and economic growth Summary Bee pollen is one of the most sources rich in To avoid spoilage, fresh pollen should be protein, it has a wide range of applications dried or frozen within few days of collection. in medicine making it an attractive product A simple drying method uses a regular light for processing and commercializing. This bulb (20 W). practice describes how to dry and store • Spread the pollen evenly in one layer on a pollen, and recommendations on when to carton or a tray. collect pollen granting the highest quality. • Remove any visible debris (parts of bees, Description little stones, etc.). • Suspend the light bulb high enough above Pollen is composed of 40 to 60 percent the pollen so that the pollen does not heat simple sugars (fructose and glucose), 2 to to more than 40°C or 45°C. 60 percent proteins, 3 percent minerals and vitamins, 1 to 32 percent fatty acids, and Pollen can also be dried using a solar drying 5 percent diverse other components. Bee system. The pollen itself should be covered pollen is a complete food and contains many to avoid direct sunlight and overheating. A elements that products of animal origin do simple way to make a pollen solar dryer is not possess. -
Colony Collapse Disorder in Relation to Human-Produced Toxins: What's
Colony Collapse Disorder in relation to human-produced toxins: What’s the buzz all about? Available at: http://www.sawyoo.com/postpic/2013/09/honey-bee-hives_77452.jpg Last accessed: 17/04/2017 Abstract: p2 Introduction: p3 Insecticides: p5 Herbicides & fungicides: p7 Miticides & other preventative measures: p9 “Inactive” ingredients: p10 Synergies between pesticides: p11 Conclusions: p12 Discussion: p12 References: p14 1 Abstract In recent years, the global population of pollinating animals has been in decline. The honey bee in particular is one of the most important and well known pollinators and is no exception.The Western honey bee Apis mellifera, the most globally spread honey bee species suffers from one problem in particular. Colony Collapse Disorder (CCD), which causes the almost all the worker bees to abandon a seemingly healthy and food rich hive during the winter. One possible explanation for this disorder is that it is because of the several human produced toxins, such as insecticides, herbicides, fungicides and miticides. So the main question is: Are human-produced toxins the primary cause of CCD? It seems that insecticides and, in particular, neonicotinoid insecticides caused increased mortality and even recreated CCD-like symptoms by feeding the bees with neonicotinoids. Herbicides seem relatively safe for bees, though they do indirectly reduce the pollen diversity, which can cause the hive to suffer from malnutrition. Fungicides are more dangerous, causing several sublethal effects, including a reduced immune response and changing the bacterial gut community. The levels of one fungicide in particular, chlorothalonil, tends to be high in hives. Miticides levels tend to be high in treated hives and can cause result in bees having a reduced lifespan. -
Bee Nutrition and Floral Resource Restoration Vaudo Et Al
Available online at www.sciencedirect.com ScienceDirect Bee nutrition and floral resource restoration Anthony D Vaudo, John F Tooker, Christina M Grozinger and Harland M Patch Bee-population declines are linked to nutritional shortages [1–5,6 ,7 ]. We propose a rational approach for restoring caused by land-use intensification, which reduces diversity and and conserving pollinator habitat that focuses on bee abundance of host-plant species. Bees require nectar and nutrition by firstly, determining the specific nutritional pollen floral resources that provide necessary carbohydrates, requirements of different bee species and how nutrition proteins, lipids, and micronutrients for survival, reproduction, influences foraging behavior and host-plant species and resilience to stress. However, nectar and pollen nutritional choice, and secondly, determining the nutritional quality quality varies widely among host-plant species, which in turn of pollen and nectar of host-plant species. Utilizing this influences how bees forage to obtain their nutritionally information, we can then thirdly, generate targeted plant appropriate diets. Unfortunately, we know little about the communities that are nutritionally optimized for pollina- nutritional requirements of different bee species. Research tor resource restoration and conservation. Here, we re- must be conducted on bee species nutritional needs and view recent literature and knowledge gaps on how floral host-plant species resource quality to develop diverse and resource nutrition and diversity influences bee health and nutritionally balanced plant communities. Restoring foraging behavior. We discuss how basic research can be appropriate suites of plant species to landscapes can support applied to develop rationally designed conservation pro- diverse bee species populations and their associated tocols that support bee populations. -
Dose–Response Relationships of Clothianidin, Imidacloprid, and Thiamethoxam to Blissus Occiduus (Hemiptera: Blissidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2011 Dose–Response Relationships of Clothianidin, Imidacloprid, and Thiamethoxam to Blissus occiduus (Hemiptera: Blissidae) M. D. Stamm University of Nebraska-Lincoln, [email protected] Frederick P. Baxendale University of Nebraska-Lincoln, [email protected] Tiffany Heng-Moss University of Nebraska-Lincoln, [email protected] Blair D. Siegfried University of Nebraska-Lincoln, [email protected] Erin E. Blankenship University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Stamm, M. D.; Baxendale, Frederick P.; Heng-Moss, Tiffany; Siegfried, Blair D.; Blankenship, Erin E.; and Gaussoin, Roch E., "Dose–Response Relationships of Clothianidin, Imidacloprid, and Thiamethoxam to Blissus occiduus (Hemiptera: Blissidae)" (2011). Faculty Publications: Department of Entomology. 269. https://digitalcommons.unl.edu/entomologyfacpub/269 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors M. D. Stamm, Frederick P. Baxendale, Tiffany Heng-Moss, Blair D. Siegfried, Erin E. Blankenship, and Roch E. Gaussoin This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ entomologyfacpub/269 HORTICULTURAL ENTOMOLOGY Dose–Response Relationships of Clothianidin, Imidacloprid, and Thiamethoxam to Blissus occiduus (Hemiptera: Blissidae) M. D. STAMM,1,2 F. P. BAXENDALE,1 T. M. HENG-MOSS,1 B. D. -
Recent Advances on Detection of Insecticides Using Optical Sensors
sensors Review Recent Advances on Detection of Insecticides Using Optical Sensors Nurul Illya Muhamad Fauzi 1, Yap Wing Fen 1,2,*, Nur Alia Sheh Omar 1,2 and Hazwani Suhaila Hashim 2 1 Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] (N.I.M.F.); [email protected] (N.A.S.O.) 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected] Abstract: Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides. Citation: Fauzi, N.I.M.; Fen, Y.W.; Omar, N.A.S.; Hashim, H.S. Recent Keywords: insecticides; optical sensor; recognition element Advances on Detection of Insecticides Using Optical Sensors. -
Prohibited and Restricted Pesticides List Fair Trade USA® Agricultural Production Standard Version 1.1.0
Version 1.1.0 Prohibited and Restricted Pesticides List Fair Trade USA® Agricultural Production Standard Version 1.1.0 Introduction Through the implementation of our standards, Fair Trade USA aims to promote sustainable livelihoods and safe working conditions, protection of the environment, and strong, transparent supply chains.. Our standards work to limit negative impacts on communities and the environment. All pesticides can be potentially hazardous to human health and the environment, both on the farm and in the community. They can negatively affect the long-term sustainability of agricultural livelihoods. The Fair Trade USA Agricultural Production Standard (APS) seeks to minimize these risks from pesticides by restricting the use of highly hazardous pesticides and enhancing the implementation of risk mitigation practices for lower risk pesticides. This approach allows greater flexibility for producers, while balancing controls on impacts to human and environmental health. This document lists the pesticides that are prohibited or restricted in the production of Fair Trade CertifiedTM products, as required in Objective 4.4.2 of the APS. It also includes additional rules for the use of restricted pesticides. Purpose The purpose of this document is to outline the rules which prohibit or restrict the use of hazardous pesticides in the production of Fair Trade Certified agricultural products. Scope • The Prohibited and Restricted Pesticides List (PRPL) applies to all crops certified against the Fair Trade USA Agricultural Production Standard (APS). • Restrictions outlined in this list apply to active ingredients in any pesticide used by parties included in the scope of the Certificate while handling Fair Trade Certified products. -
Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved. -
Pollinator News Oct
Pollinator News Oct. 3, 2014 Pictorial of abnormal bee mortality from Minnesota systemic pesticide exposure The top picture was taken Sept. 23rd as Jeff Anderson was preparing to take honey off and cull dead and dying hives. This particular bee yard has more than the normal number of skips, but is fairly representative of 2014. He starts his bee yards with 9 pallets / 36 beehives. The picture above was taken Sept. 24th part-way through pulling honey off a bee yard. They are working right to left, note the first pallet has only one hive still on it containing a queen and some bees, the other 3 have been removed as dead. There is quite a bit of honey in the supers. Jeff estimates the hives, including the ones pulled out as dead averaged close to 100 pounds of surplus honey. It takes a robust hive of bees to make honey; dead bees are not efficient collectors. He always combines the hives on the pallets before leaving the bee yard. We took the picture above just before picking up the empty pallets on half of the bee yard. These two photos are from one half of the bee yard which started with 36 hives. The total number of hives alive on pallets when we finished was 10. USDA estimates an additional 30% will die during the winter. Honey bees are an excellent environmental1 indicator species. If something is amiss within their forage range, it will show up here. High Speed Photography Captures Honey bees Filming for a documentary, Jeremy Dunbar captured various frame rates from 16,000 frames per second to 150,000 frames per second. -
Different but the Same: Bumblebee Species Collect Pollen of Different Plant Sources but Similar Amino Acid Profiles Linda Kriesell, Andrea Hilpert, Sara D
Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles Linda Kriesell, Andrea Hilpert, Sara D. Leonhardt To cite this version: Linda Kriesell, Andrea Hilpert, Sara D. Leonhardt. Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, Springer Verlag, 2017,48 (1), pp.102-116. 10.1007/s13592-016-0454-6. hal-01538639 HAL Id: hal-01538639 https://hal.archives-ouvertes.fr/hal-01538639 Submitted on 13 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:102–116 Original article * INRA, DIB and Springer-Verlag France, 2016 DOI: 10.1007/s13592-016-0454-6 Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles 1 2 1 Linda KRIESELL , Andrea HILPERT , Sara D. LEONHARDT 1Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074, Würzburg, Germany 2Institute of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany Received 18 December 2015 – Revised 11 May 2016 – Accepted 25 May 2016 Abstract – Access to abundant and diverse floral plant sources is essential for generalist bees as they obtain all energy and nutrients required from pollen and nectar.