Safer Neonic-Free Pesticides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of Fluralaner and Afoxolaner Treatments to Control Flea
Dryden et al. Parasites & Vectors (2016) 9:365 DOI 10.1186/s13071-016-1654-7 RESEARCH Open Access Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA Michael W. Dryden1*, Michael S. Canfield2, Kimberly Kalosy1, Amber Smith1, Lisa Crevoiserat1, Jennifer C. McGrady1, Kaitlin M. Foley1, Kathryn Green2, Chantelle Tebaldi2, Vicki Smith1, Tashina Bennett1, Kathleen Heaney3, Lisa Math3, Christine Royal3 and Fangshi Sun3 Abstract Background: A study was conducted to evaluate and compare the effectiveness of two different oral flea and tick products to control flea infestations, reduce pruritus and minimize dermatologic lesions over a 12 week period on naturally infested dogs in west central FL USA. Methods: Thirty-four dogs with natural flea infestations living in 17 homes were treated once with a fluralaner chew on study day 0. Another 27 dogs living in 17 different homes were treated orally with an afoxolaner chewable on day 0, once between days 28–30 and once again between days 54–60. All products were administered according to label directions by study investigators. Flea populations on pets were assessed using visual area counts and premise flea infestations were assessed using intermittent-light flea traps on days 0, 7, 14, 21, and once between days 28–30, 40–45, 54–60 and 82–86. Dermatologic assessments were conducted on day 0 and once monthly. Pruritus assessments were conducted by owners throughout the study. No concurrent treatments for existing skin disease (antibiotics, anti-inflammatories, anti-fungals) were allowed. -
Chemicals Implicated in Colony Collapse Disorder
Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Federal Register/Vol. 86, No. 161/Tuesday, August 24, 2021
Federal Register / Vol. 86, No. 161 / Tuesday, August 24, 2021 / Rules and Regulations 47221 EPA–APPROVED MISSOURI REGULATIONS State effective Missouri citation Title date EPA approval date Explanation Missouri Department of Natural Resources ******* Chapter 6—Air Quality Standards, Definitions, Sampling and Reference Methods, and Air Pollution Control Regulations for the State of Missouri ******* 10–6.110 ........... Reporting Emission Data, Emis- 3/30/2021 8/24/2021, [Insert Federal Reg- Section (3)(A), Emission Fees, sion Fees, and Process Infor- ister citation]. has not been approved as part mation. of the SIP. ******* * * * * * ACTION: Final rule. year. To the maximum extent prudent and determinable, we must designate PART 70—STATE OPERATING PERMIT SUMMARY: We, the U.S. Fish and critical habitat for any species that we PROGRAMS Wildlife Service (Service), are listing the determine to be an endangered or Franklin’s bumble bee (Bombus threatened species under the Act. ■ 3. The authority citation for part 70 franklini), an invertebrate species from Listing a species as an endangered or continues to read as follows: Douglas, Jackson, and Josephine threatened species and designation of Authority: 42 U.S.C. 7401, et seq. Counties in Oregon, and Siskiyou and critical habitat can only be completed Trinity Counties in California, as an ■ 4. In appendix A to part 70 the entry by issuing a rule. endangered species under the What this document does. This rule for ‘‘Missouri’’ is amended by adding Endangered Species Act of 1973, as paragraph (jj) to read as follows: lists Franklin’s bumble bee (Bombus amended (Act). This rule adds this franklini) as an endangered species Appendix A to Part 70—Approval species to the Federal List of under the Act. -
The Impact of the Nation's Most Widely Used Insecticides on Birds
The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations. -
Froggatt) (Diptera: Tephritidae
insects Article Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) Olivia L. Reynolds 1,2,*, Terrence J. Osborne 2 and Idris Barchia 3 1 Graham Centre for Agricultural Innovation (New South Wales Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia 2 New South Wales Department of Primary Industries, Biosecurity and Food Safety, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia; [email protected] 3 New South Wales Department of Primary Industries, Chief Scientist’s Branch, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-246-406-200 Academic Editors: Michael J. Stout, Jeff Davis, Rodrigo Diaz and Julien M. Beuzelin Received: 2 February 2017; Accepted: 2 May 2017; Published: 9 May 2017 Abstract: This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay trialed the mortality of adults exposed to one- and five-day insecticide residues on peaches, and subsequent offspring. Abamectin, alpha-cypermethrin, clothianidin, dimethoate (half-label rate), emamectin benzoate, fenthion (half- and full-label rate), and trichlorfon were the most efficacious in bioassay 1, across 18 tested insecticide treatments. -
Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin
www.nature.com/scientificreports OPEN Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin Received: 24 November 2016 Annely Brandt1, Katharina Grikscheit2, Reinhold Siede1, Robert Grosse2, Marina Doris Accepted: 19 May 2017 Meixner 1 & Ralph Büchler1 Published: xx xx xxxx Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity. Honeybees are highly eusocial insects that build colonies of several thousand individuals which contain only one fertile female, the queen1. This queen is responsible for all egg laying and brood production within the colony; consequently, her integrity and health is crucial for the colony’s performance and survival, and any impairment can result in adverse effects on colony fitness. In the worst case, if the workers are unable to replace a failing queen, the colony will perish2–4. -
Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity
Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Stephen Anthony Todey IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE William Arnold May 2018 © Stephen Todey, 2018 ii Acknowledgements I would like to thank Bill for all his help and guidance throughout this project, and Ann Fallon, who completed all the parent and product toxicity experiments. Thank you to Xun Ming at the Masonic Cancer Center (University of Minnesota – Twin Cities) who helped to develop the UPLC – MS/MS method used for this research and helped to operate the Orbitrap Velos. Thanks to undergraduates Josh and Amit for the work they helped to complete in the lab, and for all the dishes they washed. Thank you to all the members of the Arnold Lab Group for making me feel welcome and helping me throughout the process of completing my masters. Extra special thanks to Jill Kerrigan, Andrew McCabe, and Sarah Pati for their guidance in experimental design and data analysis. Finally, thank you to my parents, Francis and Marianne Todey, and Jennifer Anderson. I would not have gone this far without your help and support. Funding for this project was provided by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). i Abstract Neonicotinoid insecticides are currently the most widely used class of insecticides worldwide, accounting for 25% of total insecticide use. They are registered in 120 countries for use on more than 140 crops. Concern has grown, however, over their widespread detection in global surface waters, soil, finished drinking water, and wastewater, and for their potential role in colony collapse disorder in honey bees. -
Development of a CEN Standardised Method for Liquid Chromatography Coupled to Accurate Mass Spectrometry
Development of a CEN standardised method for liquid chromatography coupled to accurate mass spectrometry CONTENTS 1. Aim and scope ................................................................................................................. 2 2. Short description ................................................................................................................ 2 3. Apparatus and consumables ......................................................................................... 2 4. Chemicals ........................................................................................................................... 2 5. Procedure ........................................................................................................................... 3 5.1. Sample preparation ................................................................................................... 3 5.2. Recovery experiments for method validation ...................................................... 3 5.3. Extraction method ...................................................................................................... 3 5.4. Measurement .............................................................................................................. 3 5.5. Instrumentation and analytical conditions ............................................................ 4 5.5.1. Dionex Ultimate 3000 .......................................................................................... 4 5.5.2. QExactive Focus HESI source parameters ..................................................... -
Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template For
water Article Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template for Food Safety Assessment Ayodeji O. Adegun 1, Thompson A. Akinnifesi 1, Isaac A. Ololade 1 , Rosa Busquets 2 , Peter S. Hooda 3 , Philip C.W. Cheung 4, Adeniyi K. Aseperi 2 and James Barker 2,* 1 Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko P.M.B. 001, Ondo State, Nigeria; [email protected] (A.O.A.); [email protected] (T.A.A.); [email protected] (I.A.O.) 2 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (R.B.); [email protected] (A.K.A.) 3 School of Engineering and the Environment, Kingston University, Kingston-on-Thames KT1 2EE, UK; [email protected] 4 Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: The Owena River Basin in Nigeria is an area of agricultural importance for the production of cocoa. To optimise crop yield, the cocoa trees require spraying with neonicotinoid insecticides (Imidacloprid, Thiacloprid Acetamiprid and Thiamethoxam). It is proposed that rainwater runoff from the treated area may pollute the Owena River and that these pesticides may thereby enter the human food chain via six species of fish (Clarias gariepinus, Clarias anguillaris, Sarotherodon galilaeus, Parachanna obscura, Oreochromis niloticus and Gymnarchus niloticus) which are cultured in the river mostly for local consumption. -
Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla Undecimnotata (Coleoptera: Coccinellidae)
insects Article Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla undecimnotata (Coleoptera: Coccinellidae) Panagiotis J. Skouras 1,* , Anastasios I. Darras 2 , Marina Mprokaki 1, Vasilios Demopoulos 3, John T. Margaritopoulos 4 , Costas Delis 2 and George J. Stathas 1 1 Laboratory of Agricultural Entomology and Zoology, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (M.M.); [email protected] (G.J.S.) 2 Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (A.I.D.); [email protected] (C.D.) 3 Laboratory of Plant Protection, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] 4 Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization “DEMETER”—NAGREF, 38446 Volos, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-27210-45277 Simple Summary: Chemical insecticides are used to control agricultural pests all over the world. However, extensive use of chemical insecticides can be harmful to human health and negatively Citation: Skouras, P.J.; Darras, A.I.; impact the environment and biological control agents. We studied the toxicity and sublethal effects Mprokaki, M.; Demopoulos, V.; of imidacloprid and deltamethrin on the aphidophagous coccinellid predator Ceratomegilla -
Toxicological Studies on Boric Acid, Imidacloprid And
TOXICOLOGICAL STUDIES ON BORIC ACID, IMIDACLOPRID AND FIPRONIL AND THEIR BINARY MIXTURES AS INSECTICIDES ON GERMAN COCKROACH Blattellagermanica (L.) (DICTYOPTERA: BLATTELLIDAE) By FATMA SHERIF AHMED B.Sc. Agric. Sci. (Pesticides), Fac. Agric., Cairo Univ., 2007 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Agricultural Sciences (Pesticides) Department of Economic Entomology and Pesticides Faculty of Agriculture Cairo University EGYPT 2015 ١ INTRODUCTION The German cockroaches, Blattellagermanica (L.), (Dictyoptera, Blattellidae) are the most common indoor pests, especially in multiple-family housing and the most significant pest in many parts of the world (Goddard, 2003). German cockroaches prefer warm, wet locations with high humidity such as kitchens, bathrooms and laundry areas. These conditions are available in several places as homes, apartments, restaurants, supermarkets, hospitals and other buildings where food are stored. Cockroaches are not only corrupt food but also transfer pathogens such as Salmonella, Shigella, Escherichia coli, Staphylococcus aureus and Bacillus cereus (Baumholtz et al., 1997 and Tachbeleet al., 2006). Medically important parasites such as bacteria, fungi and molds, protozoans, viruses were isolated from external and internal surface of cockroach (Brenner, 1995). Cockroaches can also transfer both gram-positive and negative bacteria (El-Sherbini and El- Sherbini, 2011). A large number of neurotoxic and non-neurotoxic insecticides were used for German cockroach control, as this pest has a considerable ability to develop resistance to a variety of chemical insecticides(Cochran, 1989 and 1995a; Scott et al., 1990; Rust and Reierson, 1991; Rust et al., 1993; Holbrook et al., 1999; Espinosa-Islas et al., 2002 and Rahayuet al., 2012).