Hedgehog and Insulin Signalling in Β-Cell Biology and Glucose Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Hedgehog and Insulin Signalling in Β-Cell Biology and Glucose Metabolism TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Medizin Hedgehog and insulin signalling in β-cell biology and glucose metabolism Felizitas Maria Schmitz Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation Vorsitzender: Prof. Dr. Matthias Tschöp Prüfer der Dissertation: 1. Prof. Dr. Heiko Lickert 2. Prof. Dr. Martin Hrabě de Angelis Die Dissertation wurde am 31.08.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 21.02.2018 angenommen. Contents Contents 1 List of abbreviations ............................................................................................................................................. 1 2 Abstract ....................................................................................................................................................................... 7 3 Introduction .............................................................................................................................................................. 8 3.1 Relevance and implications of diabetes mellitus................................................................................... 8 3.2 The pancreas and its interplay with metabolic organs in the regulation of energy homeostasis .............................................................................................................................................................. 8 3.3 Pancreatic β-cell failure in the development of T2D ........................................................................ 11 3.4 Cilia biology and cilia-related disease ...................................................................................................... 11 3.5 Hedgehog signalling in vertebrates ........................................................................................................... 13 3.6 Insulin receptor and insulin like-growth factor receptor signalling ........................................ 16 3.6.1 The structure of INSR, IGF1R and IGF2R and their ligands ............................................... 16 3.6.2 Signal transduction and function of INSR, IGF1R and IGF2R ............................................ 17 3.6.3 Expression and physiological function of INSR and IGF1R ................................................ 19 3.6.4 Autocrine insulin signalling in the pancreatic β-cell ............................................................. 19 3.6.5 The function of the IGF2/CI-M6P receptor ................................................................................. 20 3.6.6 The metabolic regulator AMPK ......................................................................................................... 21 3.7 Endocytosis and trafficking of receptor tyrosine kinases .............................................................. 22 3.7.1 Receptor trafficking routes after endocytosis of RTKs ......................................................... 22 3.7.2 Receptor endocytosis pathways and COP vesicle-mediated transport of RTKs ..... 23 3.7.3 Regulation of RTK-mediated signalling through endocytic and trafficking processes ......................................................................................................................................................................... 25 3.8 The 5330417C22RIK gene: state of the art ........................................................................................... 26 3.9 Aims of the thesis ................................................................................................................................................ 27 4 Results ....................................................................................................................................................................... 28 4.1 Analysis of Hedgehog signalling in the islet of Langerhans and its impact on glucose metabolism ............................................................................................................................................................. 28 4.1.1 Hh signalling activity in pancreatic cells is differentially regulated in vitro and in vivo ................................................................................................................................................................. 28 4.1.2 Hh signalling elevates proliferation rate of endocrine islet cells in vitro .................... 34 4.1.3 Adult heterozygous Kif7 mice exhibit an insulin secretion defect ................................. 35 4.2 A novel Cre-inducible knock-in ARL13B-tRFP fusion cilium reporter.................................... 36 i Contents 4.2.1 Generation of the ARL13B-tRFP reporter mouse line ........................................................... 36 4.2.2 Functional analysis of the ARL13B-tRFP mouse strain ........................................................ 40 4.2.3 The ARL13B-tRFP reporter protein accurately localizes to cilia in mono-and multi- ciliated tissue............................................................................................................................................ 42 4.2.4 The ARL13B-tRFP reporter enables the monitoring of cilia assembly and disassembly in living cells ................................................................................................................. 45 4.3 Characterization of a putative modulator of the InsR/Igfr signalling system in vivo and in vitro ....................................................................................................................................................................... 47 4.3.1 Bioinformatic analysis of the 5330417C22RIK gene and protein .................................. 47 4.3.2 Generation of mono- and polyclonal Igfr-L antibodies......................................................... 56 4.3.3 Analysis of postnatal death of Igfr-L-/- mice ............................................................................... 60 4.3.4 Metabolic study of adult Igfr-L+/- male and female mice ..................................................... 63 4.3.5 The molecular function of Igfr-L ...................................................................................................... 78 5 Discussion ............................................................................................................................................................... 99 5.1 The ARL13B-tRFP cilia reporter is a valuable tool for the analysis of ciliary biology .... 99 5.2 Relevance of Hh signalling in the islet of Langerhans and its implication on glucose metabolism .......................................................................................................................................................... 100 5.3 Igfr-L, a putative modulator of the InsR/Igfr system and glucose homeostasis ............. 102 5.3.1 Potential causes for postnatal death of Igfr-L-/- pups ......................................................... 103 5.3.2 Influence of Igfr-L on energy homeostasis ............................................................................... 104 5.3.3 Igfr-L-mediated regulation of InsR/Igfr signalling .............................................................. 106 5.3.4 Protein structure and subcellular trafficking dynamics of Igfr-L ................................ 108 5.3.5 Regulation of cell surface location of Igfr-L by the presence of extracellular glucose ...................................................................................................................................................................... 110 5.3.6 Igfr-L endocytosis and trafficking by CME ............................................................................... 111 5.3.7 Mechanistical model of Igfr-L regulating InsR/Igfr signal transduction .................. 112 5.3.8 Igfr-L as potential therapeutic target.......................................................................................... 115 6 Material and methods .................................................................................................................................... 117 6.1 Material ................................................................................................................................................................. 117 6.1.1 Equipment................................................................................................................................................. 117 6.1.2 Consumables ............................................................................................................................................ 119 6.1.3 Kits and Mastermix .............................................................................................................................. 120 6.1.4 Chemicals................................................................................................................................................... 121 ii Contents 6.1.5 Buffers and solutions........................................................................................................................... 123 6.1.6 Solutions for cell culture.................................................................................................................... 125 6.1.7 Enzymes, inhibitors and growth factors ................................................................................... 126 6.1.8 Antibodies
Recommended publications
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Human GPRASP2 Antibody
    Human GPRASP2 Antibody Monoclonal Mouse IgG2B Clone # 698742 Catalog Number: MAB7078 DESCRIPTION Species Reactivity Human Specificity Detects human GRASP2 in direct ELISAs. Source Monoclonal Mouse IgG2B Clone # 698742 Purification Protein A or G purified from hybridoma culture supernatant Immunogen E. coli­derived recombinant human GPRASP2 Gly47­Asp371 Accession # Q96D09 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL See Below Immunohistochemistry 8­25 µg/mL See Below DATA Western Blot Immunohistochemistry Detection of Human GPRASP2 by Western Blot. Western blot GPRASP2 in Human Brain. GPRASP2 was shows lysates of SH­SY5Y human neuroblastoma cell line. PVDF detected in immersion fixed paraffin­ membrane was probed with 1 µg/mL of Mouse Anti­Human GPRASP2 embedded sections of human brain (cortex) Monoclonal Antibody (Catalog # MAB7078) followed by HRP­ using Mouse Anti­Human GPRASP2 conjugated Anti­Mouse IgG Secondary Antibody (Catalog # HAF007). Monoclonal Antibody (Catalog # MAB7078) A specific band was detected for GPRASP2 at approximately 94 kDa at 15 µg/mL overnight at 4 °C. Tissue was (as indicated). This experiment was conducted under reducing stained using the Anti­Mouse HRP­DAB Cell conditions and using Immunoblot Buffer Group 1. & Tissue Staining Kit (brown; Catalog # CTS002) and counterstained with hematoxylin (blue).
    [Show full text]
  • A Temporally Controlled Sequence of X-Chromosome Inactivation and Reactivation Defines Female Mouse in Vitro Germ Cells with Meiotic Potential
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455976; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A temporally controlled sequence of X-chromosome inactivation and reactivation defines female mouse in vitro germ cells with meiotic potential Jacqueline Severino1†, Moritz Bauer1,9†, Tom Mattimoe1, Niccolò Arecco1, Luca Cozzuto1, Patricia Lorden2, Norio Hamada3, Yoshiaki Nosaka4,5,6, So Nagaoka4,5,6, Holger Heyn2, Katsuhiko Hayashi7, Mitinori Saitou4,5,6 and Bernhard Payer1,8* Abstract The early mammalian germ cell lineage is characterized by extensive epigenetic reprogramming, which is required for the maturation into functional eggs and sperm. In particular, the epigenome needs to be reset before parental marks can be established and then transmitted to the next generation. In the female germ line, reactivation of the inactive X- chromosome is one of the most prominent epigenetic reprogramming events, and despite its scale involving an entire chromosome affecting hundreds of genes, very little is known about its kinetics and biological function. Here we investigate X-chromosome inactivation and reactivation dynamics by employing a tailor-made in vitro system to visualize the X-status during differentiation of primordial germ cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and characterized by a large number of genes escaping full inactivation.
    [Show full text]
  • Dynamic Expression Analysis of Armc10, the Homologous Gene of Human GPRASP2, in Zebrafish Embryos
    MOLECULAR MEDICINE REPORTS 16: 5931-5937, 2017 Dynamic expression analysis of armc10, the homologous gene of human GPRASP2, in zebrafish embryos CHUNYU LIU1*, CHANGSONG LIN1*, JUN YAO1, QINJUN WEI1, GUANGQIAN XING2 and XIN CAO1 1Department of Biotechnology, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166; 2Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 30, 2016; Accepted May 23, 2017 DOI: 10.3892/mmr.2017.7357 Abstract. G protein-coupled receptor-associated sorting system of the head. The results of the present study provided protein 2 (GPRASP2), a member of the GASP family, has novel insight into the spatial and temporal mRNA expression been reported to be involved in the modulation of tran- of armc10 in zebrafish, for the further investigation of nervous scription. However, few studies have revealed the role of system diseases. GPRASP2 in the development and progression of diseases. As a model organism, zebrafish have been widely used to investi- Introduction gate human diseases. In the present study, zebrafish armadillo repeat-containing 10 (armc10), an orthologous gene of human G protein-coupled receptor (GPCR)-associated sorting protein GPRASP2 was identified, and the spatial and temporal expres- 2 (GPRASP2), located at the chromosome region Xq22.1, is sion patterns of armc10 in zebrafish during early embryonic a member of the GPCR-associated sorting protein (GASP) development were revealed. Bioinformatics
    [Show full text]
  • Investigating the Effect of Chronic Activation of AMP-Activated Protein
    Investigating the effect of chronic activation of AMP-activated protein kinase in vivo Alice Pollard CASE Studentship Award A thesis submitted to Imperial College London for the degree of Doctor of Philosophy September 2017 Cellular Stress Group Medical Research Council London Institute of Medical Sciences Imperial College London 1 Declaration I declare that the work presented in this thesis is my own, and that where information has been derived from the published or unpublished work of others it has been acknowledged in the text and in the list of references. This work has not been submitted to any other university or institute of tertiary education in any form. Alice Pollard The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. 2 Abstract The prevalence of obesity and associated diseases has increased significantly in the last decade, and is now a major public health concern. It is a significant risk factor for many diseases, including cardiovascular disease (CVD) and type 2 diabetes. Characterised by excess lipid accumulation in the white adipose tissue, which drives many associated pathologies, obesity is caused by chronic, whole-organism energy imbalance; when caloric intake exceeds energy expenditure. Whilst lifestyle changes remain the most effective treatment for obesity and the associated metabolic syndrome, incidence continues to rise, particularly amongst children, placing significant strain on healthcare systems, as well as financial burden.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation
    RESEARCH ARTICLE Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation Bomi Jung1,2,8, Daniela Padula1,2,8, Ingo Burtscher1,2,8, Cedric Landerer3,11, Dominik Lutter3,4, Fabian Theis3, Ana C. Messias5,9, Arie Geerlof5, Michael Sattler5,9, Elisabeth Kremmer6, Karsten Boldt7,10, Marius Ueffing7,10, Heiko Lickert1,2,8* 1 Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany, 2 Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany, 3 Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany, 4 Institute of Diabetes and Adipositas, Helmholtz Zentrum München, München-Neuherberg, Germany, 5 Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany, 6 Institute of Molecular Immunology, Helmholtz Zentrum München, München-Neuherberg, Germany, 7 Department of Protein Science, Helmholtz Zentrum München, München-Neuherberg, Germany, 8 German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany, 9 Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85747 Garching, Germany, 10 Centre of Ophthalmology, Institute for Ophthalmology Research, University of Tuebingen, 72076 Tuebingen, Germany, 11 Department of Ecology & Evolutionary Biology, University of OPEN ACCESS Tennessee, Knoxville TN 37996, United States of America Citation: Jung B, Padula D, Burtscher I, Landerer C, * Lutter D, Theis F, et al. (2016) Pitchfork and Gprasp2 [email protected] Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS ONE 11(2): e0149477. doi:10.1371/journal.pone.0149477 Abstract Editor: Jingwu Xie, Indiana University School of Medicine, UNITED STATES The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) sig- Received: August 7, 2015 naling by translocation into the primary cilia (PC), but how this is regulated is not well under- stood.
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • Tissue-Based Alzheimer Gene Expression Markers–Comparison Of
    Scheubert et al. BMC Bioinformatics 2012, 13:266 http://www.biomedcentral.com/1471-2105/13/266 RESEARCH ARTICLE Open Access Tissue-based Alzheimer gene expression markers–comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets Lena Scheubert1,3, Mitja Lustrekˇ 2, Rainer Schmidt3, Dirk Repsilber4* and Georg Fuellen3,5* Abstract Background: Alzheimer’s disease has been known for more than 100 years and the underlying molecular mechanisms are not yet completely understood. The identification of genes involved in the processes in Alzheimer affected brain is an important step towards such an understanding. Genes differentially expressed in diseased and healthy brains are promising candidates. Results: Based on microarray data we identify potential biomarkers as well as biomarker combinations using three feature selection methods: information gain, mean decrease accuracy of random forest and a wrapper of genetic algorithm and support vector machine (GA/SVM). Information gain and random forest are two commonly used methods. We compare their output to the results obtained from GA/SVM. GA/SVM is rarely used for the analysis of microarray data, but it is able to identify genes capable of classifying tissues into different classes at least as well as the two reference methods. Conclusion: Compared to the other methods, GA/SVM has the advantage of finding small, less redundant sets of genes that, in combination, show superior classification characteristics. The biological significance of the genes and gene pairs is discussed. Background could help both understanding the causes of the disease as Sporadic Alzheimer’s disease [1] is the most common well as suggest treatment options.
    [Show full text]
  • Systems Genetics in Polygenic Autoimmune Diseases
    From the Institute of Experimental Dermatology Director: Prof. Saleh Ibrahim Systems genetics in polygenic autoimmune diseases Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Medicine Submitted by Yask Gupta from New-Delhi, India Lübeck 2015 i First referee:- Prof. Dr. med Saleh Ibrahim Second referee:- Prof. Dr. rer. nat. Jeanette Erdman Chairman:- Prof. Dr. Horst-Werner Stüzbecher Data of oral examination:- 7 June 2016 ii iii Contents 1. Introduction 9 1.1 Autoimmune diseases 3 1.2 Autoimmune bullous diseases 4 1.3 Epidermolysis bullosa acquisita (EBA): an autoantibody-mediated autoimmune skin disease 5 1.4 Role of miRNA in autoimmune diseases 5 1.5 Genes in autoimmune diseases 7 1.6 Gene networks 8 1.6.1 Gene/Protein interaction database 9 1.6.2 Ab intio prediction of gene networks 11 1.7 QTL and expression QTL 12 1.8. Prediction of ncRNA 13 1.8.1 Support vector machine and random forest 15 1.9. Structure of the thesis 18 2. Aims of the thesis 21 3. Materials and methods 23 3.1 Generation of a four way advanced intercross line 23 iv 3.2 Experimental EBA and observation protocol 24 3.2.1 Generation of recombinant peptides 24 3.3 Extraction of genomic DNA for genotypic analysis 25 3.4 Generation of microarray data (miRNAs/genes) and bioinformatics analysis 25 3.5 Software for Expression QTL analysis 26 3.5.1 HAPPY 27 3.5.2 EMMA 28 3.5.3 Implementation of software for expression QTL mapping 30 3.6 Ab initio Gene and microRNAs networks prediction 31 3.6.1 MicroRNAs 32 3.6.2 Genes 33 3.6.3 MicroRNAs gene target prediction 34 3.7 Visualization of interaction networks 35 3.8 Network databases (STRING and IPA) 36 3.9 Prediction of ncRNA tools 37 3.9.1 Dataset 38 3.9.2 Features for classification 39 3.9.3 Classification system 41 v 3.9.4 Implementation of support vector machines and random forest on the post transcriptional non coding RNA dataset 42 3.9.5 Work flow and output of ptRNApred 45 4.
    [Show full text]
  • Chemical Genetics of Vertebrate Development by Charles H Williams
    Chemical genetics of Vertebrate development By Charles H Williams III Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Cell and Developmental Biology May, 2017 Nashville, Tennessee Approved: Charles C Hong, M.D., Ph.D. (Mentor) Ken Lau, Ph.D. David Bader, Ph.D. Craig Lindsley, Ph.D. Guoqiang Gu, Ph.D. (Chair) ACKNOWLEDGEMENTS I thank my committee members for their support during this thesis. Stephen Dalton for hiPSC-NCC work. Isabel Dominguez for dn-CK2α construct. Current and former Labmates Audrey frist, Johnathan Hempel, Adrian Cadar, Young Chun, Jamie Rickmyre and Erin Booton; Programs of Developmental biology, VICC, VICB, Department of Cardiology, and Cell and Developmental Biology. NIH for funding. ii ABSTRACT Small molecules have value in their ability to modulate protein activity in ways that are not accessible using conventional genetic methods, and their potential to be developed into therapeutics. As genetic causes of human disease are identified, many are found to play an integral role in embryonic development as well. The purpose of this dissertation is to utilize vertebrate embryonic development as a platform for discovery and characterization of chemical probes using phenotype guided development. I discovered three molecules, Eggmanone, Incaskin, and Ogremorphin based on ability to perturb development of a composite of 29 anatomical features. Using these anatomical features as a query against the wealth of reference genotype-phenotype data in ZFIN, I identified the targets of the small molecules as PDE4, CK2α, and GPR68. Using eggmanone, I characterize a novel role for PDE4 in regulation of HH signaling, and show that it could be a useful therapeutic target for smo inhibitor resistant cancers.
    [Show full text]