Detecting Gene Modules Differentially Expressed in Multiple Human Brain

Total Page:16

File Type:pdf, Size:1020Kb

Detecting Gene Modules Differentially Expressed in Multiple Human Brain Detecting Gene Modules Differentially Expressed in Multiple Human Brain Regions THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Zhiwei Ma Graduate Program in Biophysics The Ohio State University 2012 Master's Examination Committee: Dr. Kun Huang, Advisor Dr. Raghu Machiraju Copyright by Zhiwei Ma 2012 Abstract Molecular screen methods such as microarrays have been used to identify molecular signatures and biological processes important for particular neuronal functions. This thesis applied a weight gene co-expression network analysis algorithm, edge-covering Quasi-Clique Merger algorithm (eQCM), on human brain microarray data from the Allen Institute of Brain Science. One thousand and sixty-six (1066) gene modules were identified. Within these 1066 gene modules, using eigengene as the representation of each gene module, 46 gene modules with significant p-values were selected by comparing the gene expression profiles between the hippocampus, parahippocampal gyrus and basal ganglia in the human brain. Through gene ontology enrichment analysis, 10 out of these 46 gene modules are significantly engaged in several biological processes of neuronal functions. The results showed that the correlation between molecular similarities and spatial proximity still exists in some human brain regions other than the neocortex. ii Dedication This document is dedicated to my parents. iii Acknowledgments I would like to express my deep gratitude to my advisor, Dr. Kun Huang, for his excellent overall guidance during my stay at OSU. I would like to thank Dr. Raghu Machiraju for being my committee member and providing me many great revision suggestions for my thesis. I would like to thank Dr. Yang Xiang for instructing me about the usage of the eQCM program. I am grateful to Ms. Kim Leonard for editing my thesis. iv Vita 2010................................................................B.S. Physics, Jilin University, China 2010 to present ..............................................Graduate Student, Biophysics Graduate Program, The Ohio State University, USA Fields of Study Major Field: Biophysics v Table of Contents Abstract .............................................................................................................................. ii Dedication ......................................................................................................................... iii Acknowledgments ............................................................................................................ iv Vita ..................................................................................................................................... v List of Tables .................................................................................................................. viii List of Figures ................................................................................................................... ix Chapter 1: Introduction ................................................................................................... 1 1.1 Background ............................................................................................................... 1 1.2 Problem Statement .................................................................................................... 2 1.3 Thesis Statement ....................................................................................................... 2 1.4 Roadmap.................................................................................................................... 3 Chapter 2: Allen Brain Data ............................................................................................ 5 2.1 The Allen Human Brain Atlas ................................................................................... 5 2.2 The Allen Developing Mouse Brain Atlas .............................................................. 11 2.3 Human Brain Gene Expression Dataset Used in This Thesis ................................. 18 vi Chapter 3: Workflow and Algorithm ........................................................................... 20 3.1 Preliminary Data Processing ................................................................................... 21 3.2 Gene Co-expression Network Analysis Using the eQCM Algorithm .................... 21 Chapter 4: Differentially Expressed Gene Modules in Specific Brain Regions ........ 25 Chapter 5: Discussion & Conclusion............................................................................. 31 References ........................................................................................................................ 34 Appendix A: Gene Symbols in Each of the Resulted 46 Gene Modules .................... 36 vii List of Tables Table 1. The donors’ information of these three datasets ................................................ 18 Table 2. Twenty-six gene modules significantly engaged in several important biological processes. .......................................................................................................................... 27 viii List of Figures Figure 1. Enter gene name/symbol/NCBI Accession Number/Entrez Gene ID ............... 6 Figure 2. Gene search result.............................................................................................. 6 Figure 3. Planar view ........................................................................................................ 7 Figure 4. Correlation search .............................................................................................. 8 Figure 5. The result of a correlation search ...................................................................... 8 Figure 6. Differential search ............................................................................................. 9 Figure 7. The result of a differential search .................................................................... 10 Figure 8. ISH data ........................................................................................................... 10 Figure 9. Enter gene symbol/ name/Entrez Gene ID ...................................................... 11 Figure 10. Results of showing relevant search topics ....................................................... 12 Figure 11. The relevant information of the gene symbol “Gabra1” ................................. 13 Figure 12. Image series of “Gabra1” ................................................................................ 14 Figure 13. Neuroblast search ............................................................................................ 15 Figure 14. Neuroblast search ............................................................................................ 15 Figure 15. Results of a neuroblast search ......................................................................... 16 Figure 16. Anatomic search .............................................................................................. 17 Figure 17. Temporal search .............................................................................................. 17 ix Figure 18. Advanced search .............................................................................................. 18 Figure 19. The summary flowchart of the procedures performed in Chapter 3 & 4 ........ 20 Figure 20. The pseudocode of the eQCM algorithm ........................................................ 22 Figure 21. The histogram showing the number of elements of each gene module .......... 23 Figure 22. The spatial distribution of the samples ............................................................ 26 Figure 23. The ANOVA boxplot for gene module #14 in three different brain regions .. 28 Figure 24. The ANOVA boxplot for gene module #30, #19, #20 and #2 in three different brain regions...................................................................................................................... 29 Figure 25. The ANOVA boxplot for gene module #29, #34, #42 and #32 in three different brain regions ....................................................................................................... 30 x Chapter 1: Introduction 1.1 Background The human brain has a very complex structure. Particular neuronal functions are localized to different parts of the brain (Flourens, 1824; Broca, 1861). Brodmann’s work (1909) of constructing a cytoarchitectural map of the neocortex showed distinct cellular organizations across different brain regions. Many previous research studies have been done to identify the functional specializations and related neuropathology in the brain. Since the development of molecular biology, some molecular screen methods such as microarrays have been used to identify molecular signatures and pathways important for particular neurobiological processes. Previously, large-scale screenings for gene expression profiles across all different human brain regions were both costly and infeasible. Since the establishment of the Allen Institute for Brain Science, genome-wide atlases of gene expression in the brain of different species are being created (Jones, Overly and Sunkin, 2009). The genome-wide atlases of gene expression provide contemporary neuroscientists great opportunities to investigate gene expression patterns in multiple brain regions of different species and have led to knowledge discovery with respect to neurological disorders. Using
Recommended publications
  • Supplementary Data
    Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2).
    [Show full text]
  • FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • In Silico Prediction of High-Resolution Hi-C Interaction Matrices
    ARTICLE https://doi.org/10.1038/s41467-019-13423-8 OPEN In silico prediction of high-resolution Hi-C interaction matrices Shilu Zhang1, Deborah Chasman 1, Sara Knaack1 & Sushmita Roy1,2* The three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to 1234567890():,; experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computa- tional prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg pre- dictions identify topologically associating domains and significant interactions that are enri- ched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg’s predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome. 1 Wisconsin Institute for Discovery, 330 North Orchard Street, Madison, WI 53715, USA. 2 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, USA. *email: [email protected] NATURE COMMUNICATIONS | (2019) 10:5449 | https://doi.org/10.1038/s41467-019-13423-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13423-8 he three-dimensional (3D) organization of the genome has Results Temerged as an important component of the gene regulation HiC-Reg for predicting contact count using Random Forests.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Supplementary Information Integrative Analyses of Splicing in the Aging Brain: Role in Susceptibility to Alzheimer’S Disease
    Supplementary Information Integrative analyses of splicing in the aging brain: role in susceptibility to Alzheimer’s Disease Contents 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project 1.2. Mount Sinai Brain Bank Alzheimer’s Disease 1.3. CommonMind Consortium 1.4. Data Availability 2. Supplementary Tables 3. Supplementary Figures Note: Supplementary Tables are provided as separate Excel files. 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project Gene expression data1. Gene expression data were generated using RNA- sequencing from Dorsolateral Prefrontal Cortex (DLPFC) of 540 individuals, at an average sequence depth of 90M reads. Detailed description of data generation and processing was previously described2 (Mostafavi, Gaiteri et al., under review). Samples were submitted to the Broad Institute’s Genomics Platform for transcriptome analysis following the dUTP protocol with Poly(A) selection developed by Levin and colleagues3. All samples were chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 ug (and were selected from a larger set of 724 samples). Sequencing was performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of the first 12 samples. These 12 samples will serve as a deep coverage reference and included 2 males and 2 females of nonimpaired, mild cognitive impaired, and Alzheimer's cases. The remaining samples were sequenced with target coverage of 50M reads; the mean coverage for the samples passing QC is 95 million reads (median 90 million reads). The libraries were constructed and pooled according to the RIN scores such that similar RIN scores would be pooled together.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • ARTICLE Doi:10.1038/Nature10523
    ARTICLE doi:10.1038/nature10523 Spatio-temporal transcriptome of the human brain Hyo Jung Kang1*, Yuka Imamura Kawasawa1*, Feng Cheng1*, Ying Zhu1*, Xuming Xu1*, Mingfeng Li1*, Andre´ M. M. Sousa1,2, Mihovil Pletikos1,3, Kyle A. Meyer1, Goran Sedmak1,3, Tobias Guennel4, Yurae Shin1, Matthew B. Johnson1,Zˇeljka Krsnik1, Simone Mayer1,5, Sofia Fertuzinhos1, Sheila Umlauf6, Steven N. Lisgo7, Alexander Vortmeyer8, Daniel R. Weinberger9, Shrikant Mane6, Thomas M. Hyde9,10, Anita Huttner8, Mark Reimers4, Joel E. Kleinman9 & Nenad Sˇestan1 Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
    [Show full text]
  • Bioinformatics Analyses of Genomic Imprinting
    Bioinformatics Analyses of Genomic Imprinting Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Barbara Hutter Saarbrücken 2009 Tag des Kolloquiums: 08.12.2009 Dekan: Prof. Dr.-Ing. Stefan Diebels Berichterstatter: Prof. Dr. Volkhard Helms Priv.-Doz. Dr. Martina Paulsen Vorsitz: Prof. Dr. Jörn Walter Akad. Mitarbeiter: Dr. Tihamér Geyer Table of contents Summary________________________________________________________________ I Zusammenfassung ________________________________________________________ I Acknowledgements _______________________________________________________II Abbreviations ___________________________________________________________ III Chapter 1 – Introduction __________________________________________________ 1 1.1 Important terms and concepts related to genomic imprinting __________________________ 2 1.2 CpG islands as regulatory elements ______________________________________________ 3 1.3 Differentially methylated regions and imprinting clusters_____________________________ 6 1.4 Reading the imprint __________________________________________________________ 8 1.5 Chromatin marks at imprinted regions___________________________________________ 10 1.6 Roles of repetitive elements ___________________________________________________ 12 1.7 Functional implications of imprinted genes _______________________________________ 14 1.8 Evolution and parental conflict ________________________________________________
    [Show full text]
  • 1) (As of December 2018) and the Latest GWAS of AD (2
    SUPPLEMENTARY FIGURES downstream intergenic ncRNA_exonic upstream ●936 ●918 group downstream intergenic ncRNA_exonic upstream group exonic exonicintronicintronic ncRNA_intronic ncRNA_intronicUTR3 UTR3 3.8% 1.2%1.5%1.9% 3.8% 5.4%5.4% 750 0.3% 3.8%1.2%1.5%1.9% ●700 5.4% ●670 0.3% 500 45.8% 40.240.2% % 45.8% ●329 ●274 250 ●223 Number (GWAS SNPs/studies) Number (GWAS ●128 ●105 45.8% ●54 ●57 ●58 ●48 ●42 ●46 ●50 ●30 ●3740.2% ● ●17 ●25 ●4 ●6 ●12 0 ● 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year Supplementary Figure S1. GWAS of AD since 2007. The figure is based on data from the GWAS Catalog (1) (as of December 2018) and the latest GWAS of AD (2). The green area shows the total number of AD-associated SNPs, and the purple area shows the total number of GWAS of AD. The insert chart shows the proportions of different types of all 936 AD-associated SNPs. 1 100 200 RPS27A TGFB2 BIN1 C4BPB MSH2 PROC UGT1A1 RAB1A TTN DISC1 50 PDCL3 COL4A3 CD55 ERCC3 100 USP21 C4BPA ITSN2 PTPRF MPZ FMN2 INPP5D CEP85 FNBP1L CSF1 CD46 ADAMTS4 PRKRA SPRED2 0 CTNNA2 DGKD ADCY10 ZAP70 LIMS2 PDE1A PROX1 0 CHRNB2 CR1 HSPG2 SH3BGRL3 DAB1 CTBS FCER1G MAP3K2 AD risk score or log10(P value) IL6R CDC73 CD34 AD risk score or log10(P value) −50 B4GALT3 IL19 0 50 100 150 200 250 0 50 100 150 200 Chromosome 1 (Mb) Chromosome 2 (Mb) ATP2B2 LTF ARF4 MECOM PAK2 EPHB1 40 VHL PRSS42 ARL6IP5 150 COL25A1 TDGF1 RPSA CCR2 CCR1 IL1RAP IRAK2 20 PTPRG 100 FLNB TF CX3CR1 IL17RD SH3RF1 FGG FANCD2 LIMD1 CCR5 50 0 WDR1 PDGFRA EIF4E FGB AD risk score or log10(P value) AD risk
    [Show full text]
  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex
    fnagi-10-00259 August 24, 2018 Time: 10:32 # 1 ORIGINAL RESEARCH published: 27 August 2018 doi: 10.3389/fnagi.2018.00259 Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex Yang Hu1,2,3, Junping Pan1, Yirong Xin1, Xiangnan Mi1, Jiahui Wang1, Qin Gao1 and Huanmin Luo1,3* 1 Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China, 2 Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China, 3 Institute of Brain Sciences, Jinan University, Guangzhou, China Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Edited by: Panteleimon Giannakopoulos, Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 Université de Genève, Switzerland were identified and characterized by high connectivity, module membership, or gene Reviewed by: significance in the blue module. Furthermore, these genes were validated in mice of Suowen Xu, different ages. Mechanically, the potential regulators of blue module were investigated. University of Rochester, United States Maciej J. Lazarczyk, These findings highlight an important role of the blue module and its affiliated genes in Geneva University Hospitals (HUG), the control of normal brain aging, which may lead to potential therapeutic interventions Switzerland for brain aging by targeting the hub genes.
    [Show full text]
  • The Small G Protein Arl8 Contributes to Lysosomal Function and Long-Range Axonal Transport in Drosophila
    This is a repository copy of The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/134948/ Version: Accepted Version Article: Rosa-Ferreira, Cláudia, Sweeney, Sean orcid.org/0000-0003-2673-9578 and Munro, Sean (Accepted: 2018) The small G protein Arl8 contributes to lysosomal function and long- range axonal transport in Drosophila. Biology Open. (In Press) https://doi.org/10.1242/bio.035964 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila Cláudia Rosa-Ferreira1 , Sean T. Sweeney2 and Sean Munro1* 1: MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK 2: Department of Biology University of York York YO10 5DD UK *: Corresponding author. Email: [email protected] © 2018.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]